Preparation and Characterization of Demineralized Bone Particle Impregnated Poly(L-lactide) Scaffolds

  • Gilson Khang (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Park, Chong-Soo (Department of Polymer Science and Technology, Chonbuk National University) ;
  • John M. Rhee (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Lee, Sang-Jin (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Young-Moo (Department of Industrial Chemistry, Hanyang University) ;
  • Park, Myoung-Kyu (Biomaterials Laboratory, Korea Research Institutes of Chemical Technology) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institutes of Chemical Technology) ;
  • Lee, Ilwoo (Department of Neurosurgery, Catholic University, Medical College)
  • Published : 2001.10.01

Abstract

In order to endow with new bioactive functionality from demineralized bone particle (DBP) as natural source to poly(L-lactide) (PLA) synthetic biodegradable polymer, porous DBP/PLA as natural/synthetic composite scaffolds were prepared and compared by means of the emulsion freeze drying and solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. For the emulsion freeze drying method, it was observed that the pore size decreased in the order of 79$\mu\textrm{m}$ (PLA control) > 47$\mu\textrm{m}$ (20% of DBP) > 23 $\mu\textrm{m}$ (40% of DBP) > 15$\mu\textrm{m}$ (80% of DBP). Porosities as well as specific pore areas decreased with increasing the amount of DBR. It can be explained that DBP acts like emulsifier resulting in stabilizing water droplet in emulsion. For the solvent casting/salt leaching method, a uniform distribution of well interconnected pores from the surface to core region were observed the pore size of 80 ∼70 $\mu\textrm{m}$ independent with DBP amount. Porosities as well as specific pore areas also were almost same. For pore size distribution by the mercury intrusion porosimeter analysis between the two methods, the pore size distribution of the emulsion freeze drying method was broader than that of the solvent casting/salt leaching method due to the mechanism of emulsion formation. Scaffolds of PLA alone, DBP/PLA of 40 and 80%, and DBP powder were implanted on the back of athymic nude mouse to observe the effect of DBP on the induction of cells proliferation by hematoxylin and eosin staining for 8 weeks. It was observed that the effect of DBP/PLA scaffolds on bone induction are stronger than PLA scaffolds, even though the bone induction effect of DBP/PLA scaffold might be lowered than only DBP powder, that is to say, in the order of DBP only > DBP/PLA scaffolds of 40 and 80% DBP > PLA scaffolds only for osteoinduction activity. In conclusion, it seems that DBP plays an important role for bone induction in DBP/PLA scaffolds for the application of tissue engineering area.

Keywords

References

  1. Encyclopedic Handbook of Biomaterials and Bioengineering v.2 C. M. Agrawal;G. G. Niederauer;D. M. Micallef;K. A. Athanasiou
  2. J. Oral Maxillofac. Surg. v.45 no.594 J. O. Holinger;J. P. Schmitz
  3. J. Bioeng v.1 no.231 D. F. Williams;E. Mort
  4. J. Bone Joint Surg. v.73-A no.1 O. Bostman
  5. Tissue Engineering v.1 no.241 C. M. Agrawal;P. E. Gabriele;G. Niederauer;K. A. Athanasiou
  6. Biotech. Bioeng. v.38 no.145 L. G. Cima;D. E. Ingber;J. P. Vacanti;R. Langer
  7. Biomaterials v.14 no.323 A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer
  8. Biomaterials v.14 no.270 H. L. Wald;G. Sarakinos;M. D. Lyman;A. G. Mikos;J. P. Vacanti;R. Langer
  9. J. Biomed Mater. Res. v.27 no.183 A. G. Mikos;Y. Bao;L. G. Cima;D. E. Ingber;J. P. Vacanti;R. Langer
  10. J. Biomed. Mater. Res. v.34 no.87 G. G. Giodano;R. C. Thomson;S. L. Ishaug;A. G. Mikos;S. Cumber;C. A. Garcia;D. Lahiri Munir
  11. J. Biomed. Mater. Res. v.34 no.211 D. A. Grande;C. Halberstadt;G. Naughton;R. Schwartz;R. Manji
  12. Biomaterials v.11 no.679 H. T. Wang;H. Palmer;R. J. Linhardt;D. R. Flanagen;E. Schmitt
  13. J. Control. Release v.37 no.1139 A. Carrio;G. Schwach;J. Coudane;M. Vert
  14. J. Control. Release v.37 no.83 C. Schmidt;R. Wenz;B. Nies;F. Moll
  15. Korea Polymer J. v.7 no.79 J. C. Cho;G. Khang;J. M. Rhee;Y. S. Kim;J. S. Lee;H. B. Lee
  16. Bio-Med. Mater. Eng. v.9 no.49 G. Khang, J. C. Cho;J. W. Lee;J. M. Rhee;H. B. Lee
  17. Bio-Med. Mater. Eng. v.5 no.259 G. Khang;J. B. Lee;J. B. Park
  18. Bio-Med. Mater. Eng. v.5 no.278 G. Khang;H. B. Lee;J. B. Park
  19. Bio-Med. Mater. Eng. v.5 no.259 G. Khang;B. J. Jeong;H. B. Lee;J. B. Park
  20. Bio-Med. Mater. Eng. v.7 no.357 G. Khang;J. H. Jeon;J. C. Cho;H. B. Lee
  21. Polymer (Korea) v.24 no.877 G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee;H. B. Lee
  22. Polymer(Korea) v.24 no.877 G. Khang;S. J. Lee;J. H. Jeon;J. H. Lee;Y. M. Lee;H. B. Lee
  23. Korea Polymer J. v.8 no.276 G. Khang;J. H. Lee;I. Lee;J. M. Rhee;H. B. Lee
  24. Korea Polymer J. v.9 no.107 G. Khang;M. K. Choi;J. M. Rhee;S. J. Lee;H. B. Lee;Y. Iwasaki;N. Nakabayashi;K. Ishigara
  25. Polymer Sci. Tech. v.12 no.239 G. Khang;J. M. Rhee;I. Lee;H. B. Lee
  26. Science v.150 no.893 M. R. Urist
  27. Science v.167 no.896 L. R. Higgins;M. R. Urist
  28. Calcif. Tissue Int. v.65 no.156 J. Wang;M. J. Gilmcher
  29. Calcif. Tissue Int. v.65 no.486 J. Wang;M. J. Gilmcher
  30. Calcif. Tissue Int. v.67 no.314 J. Wang;R. Yang;L. C. Gerstenfeld;M .J. Glimcher
  31. J. Orthop. Res. v.18 no.503 H. D. Adkinsson;J. Strauss-Schoerenbeger;M. Gillis;R. Wikins;M. Jackson;K. A. Hruska
  32. Exp. Cell. Res. v.227 no.89 S. Mizuno;J. Glowacki
  33. Plast. Resconst. Surg. v.96 no.1409 C. Lasa;J. Hollinger;W. Drohan;M. MacPee
  34. Biomaterials v.17 no.1819 S. Mizuno;J. Glowacki
  35. J. Biomed. Mater. Res. v.27 no.11 L. E. Freed;J. C. Marquis;A. Nohira;J. Emmanual;A. G. Mikos;R. Langer
  36. Polymer v.26 no.2047 J. H. Aubert;S. Hulbert
  37. Makromol. Chem, Rapid Commum. v.4 no.675 S. Gogolewski;A. J. Pennings
  38. Polymer v.36 no.837 K. Whang;C. H. Thomas;K. E. Healy;G. Nuber
  39. Ind. Eng. Chem. v.17 no.782 H. L. Ritter;L. C. Drake
  40. Polymer v.35 no.1068 A. G. Mikos;A. J. Thorsen;L. A. Czerwonka;Y. Bao;R. Lanfer;D. N. Winslow;J. P. Vacanti
  41. Polymer(Korea) v.25 no.318 M. K. Choi;G. Khang;I. Lee;J. M. Rhee;H. B. Lee
  42. Physical Chemistry of Surfaces A. W. Adamson
  43. Basic Principles of Colloid Science D. H. Everett
  44. Adv. Chem. Ser. v.1 no.231 L. L.Schramm
  45. Basic Principles of Colloid Science D. H. Everett
  46. Methods of Tissue Engineering G. Khang;H. B. Lee;A Atala(ed);R. Lanza(ed)