Browse > Article
http://dx.doi.org/10.14478/ace.2018.1096

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications  

Han, Jae Hee (Membrane Research Center, Korea Research Institute of Chemical Technology)
Suh, Dong Hack (Department of Chemical Engineering, Hanyang University)
Kim, Tae-Ho (Membrane Research Center, Korea Research Institute of Chemical Technology)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 759-764 More about this Journal
Abstract
3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.
Keywords
porous polymer; porous carbons; nonsolvent-induced phase separation; carbonization; supercapacitor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19, 291-312 (2009).   DOI
2 A. Aktas, K. Erhan, S. Ozdemir, and E. Ozdemir, Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications, Electric Power Syst. Res., 144, 185-196 (2017).   DOI
3 A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev., 58, 1189-1206 (2016).   DOI
4 G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828 (2012).   DOI
5 A. G. Pandolfo and A. F. Hollenkamp, Carbon properites and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006).   DOI
6 R. Liu, L. Wan, S, Liu, L. Pan, D. Wu, and D. Zhao, An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors, Adv. Funct. Mater., 25, 526-533 (2015).   DOI
7 K. Sheng, Y. Sun, C. Li, W. Yuan, and F. Shi, Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2, 247-252 (2012).   DOI
8 J. Chmiola, G. Yuschin, Y. Gotosi, C. Portet, P. Simon, and P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760-1763 (2006).   DOI
9 B. M. Yoo and H. B. Park, Current status and perspectives of graphene- based membranes for gas separation, Membr. J., 27, 216-225 (2017).   DOI
10 J. E. Shin and H. B. Park, Gas Separation properties of microporous carbon membranes containing mesopores, Membr. J., 28, 221-232 (2018).   DOI
11 P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. Mckeown, K. J. Msayib, C. E. Tattershall, and D. Wang, Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16, 456-459 (2004).   DOI
12 J. S. Bonso, G. D, Kalaw, and J. P. Ferraris, High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications, J. Mater. Chem. A, 2, 418-424 (2014).   DOI
13 J. W. Jeon, J. H. Han, S. K. Kim, D. G. Kim, Y. S. Kim, D. S. Suh, Y. T. Hong, T. H. Kim, and B. G. Kim, Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes via nonsolvent-induced phase separation for high-performance supercapacitors, J. Mater. Chem. A, 6, 8909-8915 (2018).   DOI
14 A. Venault, Y. Chang, D. M. Wang, and D. Bouyer, A Review on polymeric membranes and hygrovels prepared by vapor-induced phase separation process, Polym. Rev., 53, 568-626 (2013).   DOI
15 S. J. Park, S. Y. Jin, and J. Wawasaki, Preparation and characterization of activated carbons based on polymeric resin with KOH-impregnation, J. Korean Ind. Eng. Chem., 14, 1111-1115 (2003).
16 B. G. Choi, Y. S. Huh, and W. H. Hong, Electrochemical characterization of porous graphene film for supercapacitor electrode, Korean Chem. Eng. Res., 50, 754-757 (2012).   DOI
17 P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes, ACS Nano, 4, 4403-4411 (2010).   DOI
18 Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, and J. Wang, Flexible graphene/$MnO_2$ composite papers for supercapacitor electrodes, J. Mater. Chem., 21, 14706-14711 (2011).   DOI
19 Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. B. Holt, X. Tan, and D. Mitlin, Colossal pseudocapacitance in a high functionality- high surface area carbon anode doubles the energy of an asymmetric supercapacitor, Energy Environ. Sci., 7, 1708-1718 (2014).   DOI
20 J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, and L. Jiang, Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials, Sci. Rep., 4, 5545-5551 (2014).
21 F. Li, M. Morris, and K. Y. Chan, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core-shell carbon structure, J. Mater. Chem., 21, 8880-8886 (2011).   DOI
22 L. Wei and G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49, 4830-4838 (2011).   DOI
23 K. T. Cho, S. B. Lee, and H. W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons, J. Phys. Chem. C, 118, 9357-9367 (2014).
24 C. Portet, P. L. Taberna, P. Simon, and C. L. Rovert, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochim. Acta, 49, 905-912 (2004).   DOI