DOI QR코드

DOI QR Code

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand

나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착

  • Lee, Seungyeol (Department of Geological Sciences, Pusan National University) ;
  • Kang, Jung Chun (Department of Geological Sciences, Pusan National University) ;
  • Park, Minji (Department of Geological Sciences, Pusan National University) ;
  • Yang, Kyounghee (Department of Geological Sciences, Pusan National University) ;
  • Jeong, Hoon Young (Department of Geological Sciences, Pusan National University)
  • 이승열 (부산대학교 지질환경과학과) ;
  • 강정천 (부산대학교 지질환경과학과) ;
  • 박민지 (부산대학교 지질환경과학과) ;
  • 양경희 (부산대학교 지질환경과학과) ;
  • 정훈영 (부산대학교 지질환경과학과)
  • Received : 2012.10.22
  • Accepted : 2012.12.12
  • Published : 2012.12.31

Abstract

Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.

나노 크기 매킨나와이트(FeS)는 높은 환원력, 흡착성, 그리고 비표면적을 지니고 있어, 염소유기물의 분해와 중금속 및 비금속의 제거에 유용하다. 하지만 매킨나와이트 나노입자는 콜로이드 안정성(colloid stability)의 변화로 지하수 흐름에 따라 쉽게 확산되거나, 입자집적(particle aggregation)에 의해 대수층의 공극을 막을 수 있다. 따라서 투과반응벽(permeable reactive barrier)에 적용하기 위해서 적절한 공학적 변형이 필요하다. 본 연구에서는 코팅법을 적용해 나노크기 매킨나와이트를 변형시킴으로써 본래의 반응성을 유지하고 또한 경제적인 투과반응벽의 설치에 활용하고자 한다. 이를 위해 화학적 처리를 하지 않은 규사(non-treated silica sand, NTS)와 화학적 처리에 의해 불순물이 제거된 규사(chemically treated silica sand, CTS)를 사용해 매킨나와이트를 코팅시켰다. 두 규사 모두 약 pH 5.4에서 매킨나와이트가 최대로 코팅되었으며, 이 pH는 (1) 매킨나와이트의 용해도, (2) 규사 및 매킨나와이트의 표면전하(surface charge)에 의해 영향받았다. 최적 pH에서 NTS와 CTS에 의한 코팅량은 각각 0.101 mmol FeS/g, 0.043 mmol FeS/g으로, NTS 표면에 존재하는 산화철 등의 불순물에 의해 매킨나와이트의 코팅이 현저히 증가했다. 한편 혐기성 조건에서 코팅되지 않은 규사 2종과 최적 pH에서 코팅된 규사 2종을 이용해 아비산염(arsenite)의 흡착실험을 실시했다. pH 7에서 코팅되지 않은 NTS와 코팅된 NTS에 의한 아비산염의 상대적 제거율은 아비산염의 초기 농도에 따라 달라졌다. 낮은 농도에서 코팅되지 않은 NTS가 높은 아비산염의 제거율을 보였으나, 높은 농도에서는 코팅된 NTS가 상대적으로 높은 제거율을 보였다. 이런 차이는 아비산염은 낮은 농도에서 규사 표면에 존재하는 산화물과의 표면배위결합(surface complexation)에 의해 제거되었고, 높은 농도에서 코팅된 매킨나와이트와 반응해 황화비소(arsenic sulfides)로 침전되었기 때문이다. pH 7에서 코팅된 NTS에 비교해 코팅된 CTS는 현저히 낮은 아비산염 제거율을 보였는데, 이는 CTS의 상대적으로 낮은 매킨나와이트 코팅량에 기인했다. 따라서 코팅된 NTS는 코팅된 CTS보다 아비산염의 제거를 위한 투과반응벽의 설치에 더 적합한 물질이며, 특히 아비산염의 오염도가 심한 지하수의 복원에 유용하게 적용될 수 있다.

Keywords

References

  1. Bebie, J., Schoonen, M.A, Fuhrmann, M., and Strongin, D.R. (1998) Surface charge development on transition metal sulfides: an electrokinetic study. Geochimica et Cosmochimica Acta, 62, 633-642. https://doi.org/10.1016/S0016-7037(98)00058-1
  2. Burton, E.D., Bush, R.T., Sullivan, L.A., Hocking, R.K., Mitchell, D.R.G., Johnston, S.G., Fitzpatrick, R.W., Raven, M., McClure, S., and Jang, L.Y. (2009) Iron monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions. Environmental Science and Technology, 43, 3128-3134. https://doi.org/10.1021/es8036548
  3. Butler, E.C. and Hayes, K.F. (1998) Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environmental Science and Technology, 32, 1276-1284. https://doi.org/10.1021/es9706864
  4. Coston, J.A., Fuller, C.C., and Davis, J.A. (1995) $Pb^{2+}$ and $Zn^{2+}$ adsorption by a natural aluminum-bearing and iron-bearing surface coating on an aquifer sand. Geochimica et Cosmochimica Acta, 59, 3535-3547. https://doi.org/10.1016/0016-7037(95)00231-N
  5. Edwards, M. and Benjamin, M.M. (1989) Adsorptive filtration using coated sand: a new approach for treatment of metal-bearing wastes. Water Pollution Control Federation, 61, 1523-1533.
  6. Gallegos, T.J. (2007) Sequestration of As(III) by synthetic mackinawite under anoxic conditions. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI. 40-50p.
  7. Han, Y.-S., Gallegos, T.J., Demond, A.H., and Hayes, K.F. (2011a) FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers. Water Research, 45, 593-604. https://doi.org/10.1016/j.watres.2010.09.033
  8. Han, Y.-S., Jeong, H.Y., Demond, A.H., and Hayes, K.F. (2011b) X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand. Water Research, 45, 5727-5735 https://doi.org/10.1016/j.watres.2011.08.026
  9. Henderson, A.D. and Demond, A.H. (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environmental Engineering Science, 24, 410-423.
  10. Jeong, H.S., Lee, W.C., Cho, H.G., and Kim, S.O. (2008a) Study on adsorption characteristics of arsenic on magnetite. Journal of Mineralogical Society of Korea, 21, 425-434 (in Korean with English abstract).
  11. Jeong, H.Y. and Hayes, K.F. (2007) Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: reaction rates. Environmental Science and Technology, 41, 6390-6396. https://doi.org/10.1021/es0706394
  12. Jeong, H.Y., Lee, J.H., and Hayes, K.F. (2008b) Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area. Geochimica et Cosmochimica Acta, 72, 493-505. https://doi.org/10.1016/j.gca.2007.11.008
  13. Kuan, W.H., Lo, S.L., Wang, M.K., and Lin, C.F. (1998) Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Research, 32, 915-923. https://doi.org/10.1016/S0043-1354(97)00228-5
  14. Kunze, G.W. and Dixon, J.B. (1986) Pretreatment for mineralogical analysis in methods of soil. In Physical and Mineralogical Methods (ed. Klute, A), American Society of Agronomy and Soil Science Society of America, Wisconsin, 91-100.
  15. Lo, S.L., Jeng, H.T., and Lai, C.H. (1997) Characteristics and adsorption properties of iron-coated sand. Water Science and Technology, 35, 63-70.
  16. Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A. (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environmental Science and Technology, 36, 5455-5461. https://doi.org/10.1021/es0206846
  17. Morse, J.W. and Arakaki, T. (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta, 57, 3635-3640. https://doi.org/10.1016/0016-7037(93)90145-M
  18. Mullet, M., Boursiquot, S., and Ehrhardt, J.J. (2004) Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids and Surfaces A, 244, 77-85. https://doi.org/10.1016/j.colsurfa.2004.06.013
  19. Patterson, R.R., Fendorf, S., and Fendorf, M. (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science and Technology, 31, 2039-2044 https://doi.org/10.1021/es960836v
  20. Rickard, D. (1995) Kinetics of FeS precipitation. part I. competing reaction mechanisms. Geochimica et Cosmochimica Acta, 59, 4367-4379. https://doi.org/10.1016/0016-7037(95)00251-T
  21. Scheidegger, A., Borkovec, M., and Sticher, H. (1993) Coating of silica sand with goethite: preparation and analytical identification. Geoderma, 58, 43-65. https://doi.org/10.1016/0016-7061(93)90084-X
  22. Viollier, E., Inglett, P.W., Hunter, K., Roychoudhury, A.N., and Van Cappellen, P. (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15, 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
  23. Wolthers, M., Charlet, L., Meijden, C.H., Linde, P.R., and Rickard, D. (2005) Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochimica et Cosmochimica Acta, 69, 3483-3492. https://doi.org/10.1016/j.gca.2005.03.003
  24. Xu, Y. and Axe, L. (2005) Synthesis and characterization of iron oxide coated silica and its effect on metal adsorption. Journal of Colloid and Interface Science, 282, 11-19. https://doi.org/10.1016/j.jcis.2004.08.057

Cited by

  1. Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina vol.26, pp.2, 2013, https://doi.org/10.9727/jmsk.2013.26.2.101