• Title/Summary/Keyword: specific surface area

Search Result 1,580, Processing Time 0.028 seconds

Experimental Study on the Setting Time and Compressive Strength of Nano-Micro Pozzolanic Binders as Cement Composites (포졸란 혼화재의 입자 크기 및 비표면적에 따른 응결시간 발현 및 압축강도 특성 평가)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2022
  • In this study, the setting time and compressive strength of cement paste composites applied with nano-micro pozzolanic binders were experimental analyzed. The pozzolanic binder was reduced initial and final setting time and the compressive strength was increased. Micro silica was effective in decrease the initial setting and final setting time and impressing the compressive strength. When two or more cement binders were used, the using of silica fume and a small amount of nano silica at reduced the setting time to 62-64 % to OPC cement and the compressive strength was increased to 117 %. A small amount of mixing the nano silica was effect to pore filling and pozzolanic activation. However, the addition of a chemical admixture should be considered when mixing table design because pozzolanic binders high specific surface area causes a decrease in cement composites flow.

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Separation of cadmium and chromium heavy metals from industrial wastewater by using Ni-Zn nanoferrites

  • Thakur, Atul;Punia, Pinki;Dhar, Rakesh;Aggarwal, R.K.;Thakur, Preeti
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.457-465
    • /
    • 2022
  • The potentials of NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoadsorbents were investigated for removal of Cd and Cr from contaminated water from an electroplating industry in Himachal Pradesh, India. Optimal values were recorded under batch adsorption experiments performed to remove dissolved heavy metal ions from industrial wastewater. The specific surface area (SSA) of nanoadsorbents perceived to vary in a range 35.75-45.29 cm2/g and was calculated from the XRD data. The influence of two operating parameters, contact time and dopant (Ni) concentration was also investigated at pH ~7 with optimum dosage. Kinetic studies were conducted within a time range of 2-10 min with rapid adsorption of cadmium and chromium ions onto Ni0.2Zn0.8Fe2O4 nanoadsorbents. Pseudo-second-order kinetic model was observed to be well fitted with the adsorption data that confirmed the only existence of chemisorption throughout the adsorption process. The maximum adsorption efficiency values observed for Cd and Cr were 51.4 mg/g and 40.12 mg/g, respectively for different compositions of prepared series of nanoadsorbents. The removal percentage of Cd and Cr was found to vary in a range of 47.7%-95.25% and 21%-50% respectively. The prepared series of nanoferrite found to be suitable enough for adsorption of both heavy metal ions.

Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution

  • Yeon-Jin, Lee;Jae-In, Lee;Chang-Gu, Lee;Seong-Jik, Park
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study explored the feasibility of calcium-rich food waste, Mactra veneriformis shells (MVS), as an adsorbent for phosphate removal, and its removal efficiency was enhanced by the thermal activation process. The CaCO3 in MVS was converted to CaO by thermal activation (>800 ℃), which is more favorable for adsorbing phosphate. Thermal activation did not noticeably influence the specific surface area of MVS. The MVS thermally activated at 800 ℃ (MVS-800), showed the highest phosphate adsorption capacity, was used for further adsorption experiments, including kinetics, equilibrium isotherms, and thermodynamic adsorption. The effects of environmental factors, including pH, competing anions, and adsorbent dosage, were also studied. Phosphate adsorption by MVS-800 reached equilibrium within 48h, and the kinetic adsorption data were well explained by the pseudo-first-order model. The Langmuir model was a better fit for phosphate adsorption by MVS-800 than the Freundlich model, and the maximum adsorption capacity of MVS-800 obtained via the Langmuir model was 188.86 mg/g. Phosphate adsorption is an endothermic and involuntary process. As the pH increased, the phosphate adsorption decreased, and a sharp decrease was observed between pH 7 and 9. The presence of anions had a negative impact on phosphate removal, and their impact followed the decreasing order CO32- > SO42- > NO3- > Cl-. The increase in adsorbent dosage increased phosphate removal percentage, and 6.67 g/L of MVS-800 dose achieved 99.9% of phosphate removal. It can be concluded that the thermally treated MVS-800 can be used as an effective adsorbent for removing phosphate.

Kinetic Study of Copper Hydrotalcite Catalyst in Methanol Steam Reforming (메탄올 수증기 개질반응에서 구리가 함침된 하이드로탈사이트 촉매를 이용한 키네틱 연구)

  • Lee, Jae-hyeok;Jang, Seung Soo;Ahn, Ho-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • The reaction rate of a catalyst for producing hydrogen using the methanol steam reforming reaction was studied. It was prepared by impregnating copper, which is often used in methanol synthesis, as the main active metal, using hydrotalcite, which has excellent porosity and thermal stability, high specific surface area, weak Lewis acid point, and basicity, as a support. Activation energy and Pre-exponential factors were identified. In this study, the activation energy of the hydrotalcite catalyst impregnated with 20 wt% copper was calculated to be 97.4 kJ/mol and the Pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results.

Formation of Al2O2 supported Ni2P based 3D catalyst for atmospheric deoxygenation of rubberwood sawdust

  • Pranshu Shrivastava
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • An ex-situ gravitational fixed bed pyrolysis reactor was used over Al2O3 supported Ni2P based catalyst with various Ni/P molar ratios (0.5-2.0) and constant nickel loading of 5.37 mmol/g Al2O3 to determine the hydrodeoxygenation of rubberwood sawdust (RWS) at atmospheric pressure. The 3D catalysts formed were characterized structurally as well as acidic properties were determined by hydrogen-temperature programmed reduction (TPR). The Ni2P phase formed completely on Al2O3 for 1.5 Ni/P ratio, although lesser crystallite sizes of Ni2P were seen at Ni/P ratios less than 1.5. Additionally, it was shown that when nickel loading level increased, acidity increased and specific surface area dropped, probably because nickel phosphate is not easily converted to Ni2P. When Ni/P ratio was 1.5, Ni2P phase fully formed on Al2O3. The catalytic activity was explained in terms of impacts of reaction temperature and Ni/P molar ratio. At relatively high temperature of 450℃, the high-value deoxygenated produce was predominantly composed of n-alkanes. Based on the findings, it was suggested that hydrogenolysis, hydrodeoxygenation, dehydration, decarbonylation, and hydrogenation are all part of mechanism underlying hydrotreatment of RWS. In conclusion, the synthesized Ni2P/ Al2O3 catalyst was capable of deoxygenating RWS with ease at atmospheric pressure, primarily resulting in long chained (C9-C24) hydrocarbons and acetic acid.

Evaluation of trueness and precision of removable partial denture metal frameworks manufactured with digital technology and different materials

  • Leonardo Ciocca;Mattia Maltauro;Elena Pierantozzi;Lorenzo Breschi;Angela Montanari;Laura Anderlucci;Roberto Meneghello
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.55-62
    • /
    • 2023
  • PURPOSE. The aim of this study is to evaluate the accuracy of removable partial denture (RPD) frameworks produced using different digital protocols. MATERIALS AND METHODS. 80 frameworks for RPDs were produced using CAD-CAM technology and divided into four groups of twenty (n = 20): Group 1, Titanium frameworks manufactured by digital metal laser sintering (DMLS); Group 2, Co-Cr frameworks manufactured by DMLS; Group 3, Polyamide PA12 castable resin manufactured by multi-jet fusion (MJF); and Group 4, Metal (Co-Cr) casting by using lost-wax technique. After the digital acquisition, eight specific areas were selected in order to measure the Δ-error value at the intaglio surface of RPD. The minimum value required for point sampling density (0.4 mm) was derived from the sensitivity analysis. The obtained Δ-error mean value was used for comparisons: 1. between different manufacturing processes; 2. between different manufacturing techniques in the same area of interest (AOI); and 3. between different AOI of the same group. RESULTS. The Δ-error mean value of each group ranged between -0.002 (Ti) and 0.041 (Co-Cr) mm. The Pearson's Chi-squared test revealed significant differences considering all groups paired two by two, except for group 3 and 4. The multiple comparison test documented a significant difference for each AOI among group 1, 3, and 4. The multiple comparison test showed significant differences among almost all different AOIs of each group. CONCLUSION. All Δ-mean error values of all digital protocols for manufacturing RPD frameworks optimally fit within the clinical tolerance limit of trueness and precision.

Repair of sports bone injury based on multifunctional nanomaterial particles

  • Dongbai Guo
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.487-501
    • /
    • 2023
  • Nanoparticles have lower size and larger specific surface area, good stability and less toxic and side effects. In recent years, with the development of nanotechnology, its application range has become wider and wider, especially in the field of biomedicine, which has received more and more attention. Bone defect repair materials with high strength, high elasticity and high tissue affinity can be prepared by nanotechnology. The purpose of this paper was to study how to analyze and study the composite materials for sports bone injury based on multifunctional nanomaterials, and described the electrospinning method. In this paper, nano-sized zirconia (ZrO2) filled micro-sized hydroxyapatite (HAP) composites were prepared according to the mechanical properties of bone substitute materials in the process of human rehabilitation. Through material tensile and compression experiments, the performance parameters of ZrO2/HAP composites with different mass fraction ratios were analyzed, the influence of filling ZrO2 particles on the mechanical properties of HAP matrix materials was clarified, and the effect of ZrO2 mass fraction on the mechanical properties of matrix materials was analyzed. From the analysis of the compressive elastic modulus, when the mass fraction of ZrO2 was 15%, the compressive elastic modulus of the material was 1222 MPa, and when 45% was 1672 MPa. From the analysis of compression ratio stiffness, when the mass fraction of ZrO2 was 15%, the compression ratio stiffness was 658.07 MPa·cm3/g, and when it was 45%, the compression ratio stiffness is 943.51MPa·cm3/g. It can be seen that by increasing the mass fraction of ZrO2, the stiffness of the composite material can be effectively increased, and the ability of the material to resist deformation would be increased. Typically, the more stressed the bone substitute material, the greater the stiffness of the compression ratio. Different mass fractions of ZrO2/HAP filling materials can be selected to meet the mechanical performance requirements of sports bone injury, and it can also provide a reference for the selection of bone substitute materials for different patients.

Properties of CLC using Silica to Suppress Cracking due to Drying Shrinkage (건조수축에 따른 균열 억제를 위한 규사 혼입 CLC의 특성)

  • Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.125-126
    • /
    • 2021
  • In order to improve the housing culture, construction changes for the utilization of diverse and multifunctional spaces are appearing in response to the increasing diverse needs of consumers. Cellular Light-weight Concrete (CLC) is being developed for use in fire-resistant heat-insulating walls and non-bearing walls. However, manufacturing non-uniformity has become a problem as a drawback due to the use of foamed bubbles and normal temperature curing, and additional research is required. Therefore, in order to suppress cracks due to drying shrinkage, silica sand is mixed with CLC to try to understand its characteristics. In the experiment, the compressive strength from 7 to 28 days of age was measured via a constant temperature and humidity chamber, and the drying shrinkage was analyzed according to each condition using a strain gauge. The compressive strength of matrix tends to decrease as the substitution rate of silica sand increases. This is judged by the result derived from the fact that the specific surface area of silica sand is smaller than that of slag. Based on KS F 2701 (ALC block), the compressive strength of 0.6 products is 4.9 MPa or more as a guide, so the maximum replacement rate of silica sand that satisfies this can be seen at 60%. Looking at the change in drying shrinkage for just 7 days, the shrinkage due to temperature change and drying is 0.7 mm, and the possibility of cracking due to shrinkage can be seen, and it seems that continuous improvement and supplementation are needed in the future.

  • PDF