DOI QR코드

DOI QR Code

Separation of cadmium and chromium heavy metals from industrial wastewater by using Ni-Zn nanoferrites

  • Thakur, Atul (Amity Institute of Nanotechnology, Amity University Haryana) ;
  • Punia, Pinki (Department of Physics, Guru Jambheshwar University of Science & Technology) ;
  • Dhar, Rakesh (Department of Physics, Guru Jambheshwar University of Science & Technology) ;
  • Aggarwal, R.K. (Department of Environmental Science, Dr. Y. S. Parmar University) ;
  • Thakur, Preeti (Department of Physics, Amity University Haryana)
  • Received : 2021.11.15
  • Accepted : 2022.02.13
  • Published : 2022.05.25

Abstract

The potentials of NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoadsorbents were investigated for removal of Cd and Cr from contaminated water from an electroplating industry in Himachal Pradesh, India. Optimal values were recorded under batch adsorption experiments performed to remove dissolved heavy metal ions from industrial wastewater. The specific surface area (SSA) of nanoadsorbents perceived to vary in a range 35.75-45.29 cm2/g and was calculated from the XRD data. The influence of two operating parameters, contact time and dopant (Ni) concentration was also investigated at pH ~7 with optimum dosage. Kinetic studies were conducted within a time range of 2-10 min with rapid adsorption of cadmium and chromium ions onto Ni0.2Zn0.8Fe2O4 nanoadsorbents. Pseudo-second-order kinetic model was observed to be well fitted with the adsorption data that confirmed the only existence of chemisorption throughout the adsorption process. The maximum adsorption efficiency values observed for Cd and Cr were 51.4 mg/g and 40.12 mg/g, respectively for different compositions of prepared series of nanoadsorbents. The removal percentage of Cd and Cr was found to vary in a range of 47.7%-95.25% and 21%-50% respectively. The prepared series of nanoferrite found to be suitable enough for adsorption of both heavy metal ions.

Keywords

Acknowledgement

The author(s) would like to acknowledge the support provided under the DST-FIST Grant No. SR/FST/PSI/2018/48 of Govt. of India. Authors also wish to acknowledge Gurujal, an initiative with district administration Gurugram for financial assistance vide project No176 Gurujal dated September 10, 2019, Amity Incubation grant from The Ministry of Electronics and Information Technology: (Meity) under Technology Incubation and Development of Entrepreneurs (TIDE 2.0) program and the startup nanoLatticeX

References

  1. Ahmed, S., Chughtai, S., Keane M.A. (1998), "The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite", Sep. Purif. Technol. 13, 57-64. https://doi.org/10.1016/S1383-5866(97)00063-4.
  2. Bharti, M.K., Gupta, S., Chalia, S., Garg, I., Thakur, P. and Thakur, A. (2020), "Potential of magnetic nanoferrites in removal of heavy metals from contaminated water : Mini review", J. Supercond. Nov. Magn., 33, 3651-3665. https://doi.org/10.1007/s10948-020-05657-1.
  3. Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A. and Sharma, P.B. (2021), "Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation", J. Alloys Compd., 851, 1568781-9. https://doi.org/10.1016/j.jallcom.2020.156878.
  4. Chen, F., Guo, S., Wang, Y., Ma, L., Li, B., Song, Z., Huang, L. and Zhang, W. (2021), "Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge", Front. Environ. Sci. Eng., 16(57). https://doi.org/10.1007/s11783-021-1491-6.
  5. Chen, J., Wang, N., Liu, Y., Zhu, J.,Feng, J. and Yan, W. (2018), "Synergetic effect in a self-doping polyaniline/TiO2 composite for selective adsorption of heavy metal ions", Synth. Met., 245, 32-41. https://doi.org/10.1016/j.synthmet.2018.08.006.
  6. Ehi-eromosele, C., Ita, B., Iweala, E. and Iweala S.A. (2015), "Magneto-structural properties of Ni - Zn nanoferrites synthesized by the low-temperature auto-combustion method", Bull. Mater. Sci., 38, 1-8. https://doi.org/10.1007/s12034-015-1038-1.
  7. Gokila, V., Perarasu, V.T. and Rufina, R.D.J. (2021), "Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles", Adv. Nano Res., 10(1), 71-76. https://doi.org/10.12989/ANR.2021.10.1.071.
  8. Graves, P.R., Johnston, C. and Campaniello, J.J. (1988), "Raman scattering in spinel structure ferrites", Mater. Res. Bull., 23, 1651-1660. https://doi.org/10.1016/0025-5408(88)90255-3.
  9. Guerrero, A.V., Martinez, C.R, Alfaro-Cuevas-villanueva, R., Rivera-Munoz, E.M. and Huirache-Acuna, R. (2021), "CD(II) and PB(II) adsorption using a composite obtained from moringa oleifera lam. cellulose nanofibrils impregnated with iron nanoparticles", Water (Switzerland), 13, https://doi.org/10.3390/w13010089.
  10. Guptha, K.V. and Nesaraj, A.S. (2014), "Solvothermal synthesis and characterization of silver nanoparticles", Adv. Nano Res., 2(3), 147-155. https://doi.org/10.12989/ANR.2014.2.3.147.
  11. Hu, J., Chen, G. and Lo A I.M.C. (2005), "Removal and recovery of Cr ( VI ) from wastewater by maghemite nanoparticles", Water Res., 39(18), 4528-4536. https://doi.org/10.1016/j.watres.2005.05.051.
  12. Huang, Y. and Keller, A.A. (2015), "EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment", Water. Res. 80, 159-168. https://doi.org/10.1016/j.watres.2015.05.011.
  13. Jadhav, J., Biswas, S., Yadav, A.K., Jha, S.N. and Bhattacharya, D. (2017), "Structural and magnetic properties of nanocrystalline Ni[sbnd]Zn ferrites: In the context of cationic distribution", J. Alloys Compd., 696, 28-41. https://doi.org/10.1016/j.jallcom.2016.11.163.
  14. Kumbhar, S.S., Mahadik, M.A., Mohite, V.S., Hunge, Y.M., rajpure, K.Y., and Bhosale, C.H. (2015), "Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni-Zn ferrite thin films", Mater. Res. Bull., 67, 47-54. https://doi.org/10.1016/j.materresbull.2015.02.056.
  15. Lahouli, R., Massoudi, J., Smari, M., Rahmouni, H., Khirouni, K., Dhahri, E. and Bessais, L.(2019), "Investigation of annealing effects on the physical properties of Ni0.6Zn0.4Fe1.5Al0.5O4 ferrite", RSC Adv., 9, 19949-19964. https://doi.org/10.1039/c9ra02238d.
  16. Lata, S., Singh P.K. and Samadder, S.R. (2015), "Regeneration of adsorbents and recovery of heavy metals: A review", Int. J. Environ. Sci. Technol., 12, 1461-1478. https://doi.org/10.1007/s13762-014-0714-9.
  17. Lazarevic, Z.Z., Jovalekic, C., Milutinovic, A., Romevic, M.J. and Romcevic, N.Z. (2012), "Preparation and characterization of nano ferrites", Acta Phys. Pol. A., 121, 682-686. https://doi.org/10.12693/APhysPolA.121.682.
  18. Le, A.T., Pung, S.Y., Sreekantan, S., Matsuda, A. and Huynh, D.P. (2019), "Mechanisms of removal of heavy metal ions by ZnO particles", Heliyon, 5, 1-27. https://doi.org/10.1016/j.heliyon.2019.e01440.
  19. Li, Y., Ma, H., Ren, B. and Li, T. (2013), "Simultaneous adsorption and degradation of Cr(VI) and Cd(II) ions from aqueous solution by silica-coated Fe0 nanoparticles", J. Anal. Methods Chem., 2013, 1-8 https://doi.org/10.1155/2013/649503.
  20. Ling, L., Pan, B., Zhang, W. xian (2015), "Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV)", Water. Res., 71, 274-281. https://doi.org/10.1016/j.watres.2015.01.002.
  21. Liu, D., Wang, Y., Xu, X., Xiang, Y., Yang, Z. and Wang, P. (2021), "Highly efficient photocatalytic Cr(VI) reduction by lead molybdate wrapped with D-A conjugated polymer under visible light", Catalysts 11, 1-15. https://doi.org/10.3390/catal11010106.
  22. Massoudi, J., Smari, M., Nouri, K., Dhahri E., Khirouni, K., Bertaina, S., Bessais, L. and Hlil, E.K. (2020), "Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: From the nanoscale to microscale", RSC Adv., 10, 34556-34580. https://doi.org/10.1039/d0ra05522k.
  23. Mondal, S., Dey, A. and Pal, U. (2016). "Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study", Adv. Nano Res., 4(4), 295-307. https://doi.org/10.12989/ANR.2016.4.4.295.
  24. Pathania, A., Thakur, P., Trukhanov, A. V., Trunkhanov, S.V., Panina, L.V., Luders, U. and Tahkur, A. (2019), "Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application", Results Phys., 15, 102531. https://doi.org/10.1016/j.rinp.2019.102531.
  25. Pham, M.T., Nishihama, S. and Yoshizuka, K. (2021), "Removal of chromium from water environment by forward osmosis system", MATEC Web Conf., 333, 1-5. https://doi.org/10.1051/matecconf/202133304007.
  26. Punia, P., Dhar, R., Ravelo, B., Trukhanov, A.V., Panina, L.V., Thakur, P. and Thakur, A. (2021a), "Microstructural, optical and magnetic study of Ni - Zn nanoferrites", J. Supercond. Nov. Magn., 34(8), 2131-2140. https://doi.org/10.1007/s10948-021-05967-y.
  27. Punia, P., Bharti, M.K., Chalia, S.,Dhar, R., Ravelo, B., Thakur, P. and Thakur, A. (2021b), "Recent advances in synthesis, charateriztion and applications of nanoparticles for contaminated water treatment - a review", Ceram. Int., 47(2), 1526-1550. https://doi.org/10.1016/j.ceramint.2020.09.050.
  28. Punia, P., Bharti, M.K., Dhar, R., Thakur, P. and Thakur, A. (2022a), "Recent advances in detection and removal of heavy metals from contaminated water", ChemBioEng. Rev., 9, 1-20. https://doi.org/10.1002/cben.202100053.
  29. Punia, P., Aggarwal R.K., Kumar, R., Dhar, R., Thakur, P. and Thakur, A. (2022b), "Adsorption of Cd and Cr ions from industrial wastewater using Ca doped Ni-Zn nanoferrites: Synthesis, characterization and adsorption iaotherm analysis", Ceram. Int., In Press. https://doi.org/10.1016/j.ceramint.2022.02.234.
  30. Rana, K., Thakur, P., Tomar, M., Gupta, V. and Thakur, A. (2016), "Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor method", AIP Conference Proceedings, 1731, 1-4. https://doi.org/10.1063/1.4947806.
  31. Reddy, D., Kumar, H. and Yun, Y.S. (2016), "Spinel ferrite magnetic adsorbents: Alternative future materials for water purification", Coord. Chem. Rev., 315, 90-111. https://doi.org/10.1016/j.ccr.2016.01.012.
  32. Samad, A., Din M.I. and Ahmed, M. (2020), "Studies on batch adsorptive removal of cadmium and nickel from synthetic waste water using silty clay originated from Balochistan-Pakistan", Chinese. J. Chem. Eng., 28, 1171-1176. https://doi.org/10.1016/j.cjche.2019.12.016.
  33. Sezgin, N., Yalcin, A. and Koseoglu, Y. (2015), "MnFe2O4 nano nano spinels as potential sorbent for adsorption of chromium from industrial wastewater", Desalin. Water Treat., 57(35), 16496-16506. https://doi.org/10.1080/19443994.2015.1088808.
  34. Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2013), "Raman and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam", J. Alloys Compd., 551, 370-375. https://doi.org/10.1016/j.jallcom.2012.10.006.
  35. Singh, K., Renu, N.A. and Agarwal, M. (2017), "Methodologies for removal of heavy metal ions from wastewater: An overview", Interdiscip. Environ. Rev., 18, 124. https://doi.org/10.1504/ier.2017.10008828.
  36. Smara, A., Delimi, R., Chainet, E. and Sandeaux, J. (2007), "Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process", Sep. Purif. Technol., 57,103-110. https://doi.org/10.1016/j.seppur.2007.03.012.
  37. Taneja, S., Chahar, D., Thakur, P. and Thakur, A. (2021), "Influence of bismuth doping on structural, electrical and dielectric properties of Ni-Zn nanoferrites", J. Alloys Compd., 859, 157760. https://doi.org/10.1016/j.jallcom.2020.157760.
  38. Thakur, A., Thakur, P. and Hsu, J. (2011), "Enhancement in dielectric and magnetic properties of In3+ substituted ni-zn nano-ferrites by coprecipitation method", IEEE T. Magn., 47, 4336-4339. https://doi.org/10.1109/TMAG.2011.2156394.
  39. Zachariadis, N.M. and G.A. (2020), "Development and application of an icp-aes method for the determination of nutrient and toxic elements in savory snack products after autoclave dissolution", Separations, 66(7), https://doi.org/10.3390/separations7040066.
  40. Zhu, H., Jia, Y., Wu, X. and Wang, H. (2009), "Removal of arsenic from water by supported nano zero-valent iron on activated carbon", J. Hazard Mater., 172, 1591-1596. https://doi.org/10.1016/j.jhazmat.2009.08.031.