Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.5.457

Separation of cadmium and chromium heavy metals from industrial wastewater by using Ni-Zn nanoferrites  

Thakur, Atul (Amity Institute of Nanotechnology, Amity University Haryana)
Punia, Pinki (Department of Physics, Guru Jambheshwar University of Science & Technology)
Dhar, Rakesh (Department of Physics, Guru Jambheshwar University of Science & Technology)
Aggarwal, R.K. (Department of Environmental Science, Dr. Y. S. Parmar University)
Thakur, Preeti (Department of Physics, Amity University Haryana)
Publication Information
Advances in nano research / v.12, no.5, 2022 , pp. 457-465 More about this Journal
Abstract
The potentials of NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoadsorbents were investigated for removal of Cd and Cr from contaminated water from an electroplating industry in Himachal Pradesh, India. Optimal values were recorded under batch adsorption experiments performed to remove dissolved heavy metal ions from industrial wastewater. The specific surface area (SSA) of nanoadsorbents perceived to vary in a range 35.75-45.29 cm2/g and was calculated from the XRD data. The influence of two operating parameters, contact time and dopant (Ni) concentration was also investigated at pH ~7 with optimum dosage. Kinetic studies were conducted within a time range of 2-10 min with rapid adsorption of cadmium and chromium ions onto Ni0.2Zn0.8Fe2O4 nanoadsorbents. Pseudo-second-order kinetic model was observed to be well fitted with the adsorption data that confirmed the only existence of chemisorption throughout the adsorption process. The maximum adsorption efficiency values observed for Cd and Cr were 51.4 mg/g and 40.12 mg/g, respectively for different compositions of prepared series of nanoadsorbents. The removal percentage of Cd and Cr was found to vary in a range of 47.7%-95.25% and 21%-50% respectively. The prepared series of nanoferrite found to be suitable enough for adsorption of both heavy metal ions.
Keywords
adsorption efficiency; adsorption kinetics; heavy metals; industrial wastewater; nanoadsorbents;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2013), "Raman and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam", J. Alloys Compd., 551, 370-375. https://doi.org/10.1016/j.jallcom.2012.10.006.   DOI
2 Singh, K., Renu, N.A. and Agarwal, M. (2017), "Methodologies for removal of heavy metal ions from wastewater: An overview", Interdiscip. Environ. Rev., 18, 124. https://doi.org/10.1504/ier.2017.10008828.   DOI
3 Taneja, S., Chahar, D., Thakur, P. and Thakur, A. (2021), "Influence of bismuth doping on structural, electrical and dielectric properties of Ni-Zn nanoferrites", J. Alloys Compd., 859, 157760. https://doi.org/10.1016/j.jallcom.2020.157760.   DOI
4 Thakur, A., Thakur, P. and Hsu, J. (2011), "Enhancement in dielectric and magnetic properties of In3+ substituted ni-zn nano-ferrites by coprecipitation method", IEEE T. Magn., 47, 4336-4339. https://doi.org/10.1109/TMAG.2011.2156394.   DOI
5 Zhu, H., Jia, Y., Wu, X. and Wang, H. (2009), "Removal of arsenic from water by supported nano zero-valent iron on activated carbon", J. Hazard Mater., 172, 1591-1596. https://doi.org/10.1016/j.jhazmat.2009.08.031.   DOI
6 Hu, J., Chen, G. and Lo A I.M.C. (2005), "Removal and recovery of Cr ( VI ) from wastewater by maghemite nanoparticles", Water Res., 39(18), 4528-4536. https://doi.org/10.1016/j.watres.2005.05.051.   DOI
7 Smara, A., Delimi, R., Chainet, E. and Sandeaux, J. (2007), "Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process", Sep. Purif. Technol., 57,103-110. https://doi.org/10.1016/j.seppur.2007.03.012.   DOI
8 Zachariadis, N.M. and G.A. (2020), "Development and application of an icp-aes method for the determination of nutrient and toxic elements in savory snack products after autoclave dissolution", Separations, 66(7), https://doi.org/10.3390/separations7040066.   DOI
9 Chen, F., Guo, S., Wang, Y., Ma, L., Li, B., Song, Z., Huang, L. and Zhang, W. (2021), "Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge", Front. Environ. Sci. Eng., 16(57). https://doi.org/10.1007/s11783-021-1491-6.   DOI
10 Gokila, V., Perarasu, V.T. and Rufina, R.D.J. (2021), "Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles", Adv. Nano Res., 10(1), 71-76. https://doi.org/10.12989/ANR.2021.10.1.071.   DOI
11 Jadhav, J., Biswas, S., Yadav, A.K., Jha, S.N. and Bhattacharya, D. (2017), "Structural and magnetic properties of nanocrystalline Ni[sbnd]Zn ferrites: In the context of cationic distribution", J. Alloys Compd., 696, 28-41. https://doi.org/10.1016/j.jallcom.2016.11.163.   DOI
12 Guptha, K.V. and Nesaraj, A.S. (2014), "Solvothermal synthesis and characterization of silver nanoparticles", Adv. Nano Res., 2(3), 147-155. https://doi.org/10.12989/ANR.2014.2.3.147.   DOI
13 Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A. and Sharma, P.B. (2021), "Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation", J. Alloys Compd., 851, 1568781-9. https://doi.org/10.1016/j.jallcom.2020.156878.   DOI
14 Lata, S., Singh P.K. and Samadder, S.R. (2015), "Regeneration of adsorbents and recovery of heavy metals: A review", Int. J. Environ. Sci. Technol., 12, 1461-1478. https://doi.org/10.1007/s13762-014-0714-9.   DOI
15 Li, Y., Ma, H., Ren, B. and Li, T. (2013), "Simultaneous adsorption and degradation of Cr(VI) and Cd(II) ions from aqueous solution by silica-coated Fe0 nanoparticles", J. Anal. Methods Chem., 2013, 1-8 https://doi.org/10.1155/2013/649503.   DOI
16 Ling, L., Pan, B., Zhang, W. xian (2015), "Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV)", Water. Res., 71, 274-281. https://doi.org/10.1016/j.watres.2015.01.002.   DOI
17 Massoudi, J., Smari, M., Nouri, K., Dhahri E., Khirouni, K., Bertaina, S., Bessais, L. and Hlil, E.K. (2020), "Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: From the nanoscale to microscale", RSC Adv., 10, 34556-34580. https://doi.org/10.1039/d0ra05522k.   DOI
18 Kumbhar, S.S., Mahadik, M.A., Mohite, V.S., Hunge, Y.M., rajpure, K.Y., and Bhosale, C.H. (2015), "Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni-Zn ferrite thin films", Mater. Res. Bull., 67, 47-54. https://doi.org/10.1016/j.materresbull.2015.02.056.   DOI
19 Guerrero, A.V., Martinez, C.R, Alfaro-Cuevas-villanueva, R., Rivera-Munoz, E.M. and Huirache-Acuna, R. (2021), "CD(II) and PB(II) adsorption using a composite obtained from moringa oleifera lam. cellulose nanofibrils impregnated with iron nanoparticles", Water (Switzerland), 13, https://doi.org/10.3390/w13010089.   DOI
20 Bharti, M.K., Gupta, S., Chalia, S., Garg, I., Thakur, P. and Thakur, A. (2020), "Potential of magnetic nanoferrites in removal of heavy metals from contaminated water : Mini review", J. Supercond. Nov. Magn., 33, 3651-3665. https://doi.org/10.1007/s10948-020-05657-1.   DOI
21 Chen, J., Wang, N., Liu, Y., Zhu, J.,Feng, J. and Yan, W. (2018), "Synergetic effect in a self-doping polyaniline/TiO2 composite for selective adsorption of heavy metal ions", Synth. Met., 245, 32-41. https://doi.org/10.1016/j.synthmet.2018.08.006.   DOI
22 Ehi-eromosele, C., Ita, B., Iweala, E. and Iweala S.A. (2015), "Magneto-structural properties of Ni - Zn nanoferrites synthesized by the low-temperature auto-combustion method", Bull. Mater. Sci., 38, 1-8. https://doi.org/10.1007/s12034-015-1038-1.   DOI
23 Punia, P., Aggarwal R.K., Kumar, R., Dhar, R., Thakur, P. and Thakur, A. (2022b), "Adsorption of Cd and Cr ions from industrial wastewater using Ca doped Ni-Zn nanoferrites: Synthesis, characterization and adsorption iaotherm analysis", Ceram. Int., In Press. https://doi.org/10.1016/j.ceramint.2022.02.234.   DOI
24 Mondal, S., Dey, A. and Pal, U. (2016). "Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study", Adv. Nano Res., 4(4), 295-307. https://doi.org/10.12989/ANR.2016.4.4.295.   DOI
25 Graves, P.R., Johnston, C. and Campaniello, J.J. (1988), "Raman scattering in spinel structure ferrites", Mater. Res. Bull., 23, 1651-1660. https://doi.org/10.1016/0025-5408(88)90255-3.   DOI
26 Lahouli, R., Massoudi, J., Smari, M., Rahmouni, H., Khirouni, K., Dhahri, E. and Bessais, L.(2019), "Investigation of annealing effects on the physical properties of Ni0.6Zn0.4Fe1.5Al0.5O4 ferrite", RSC Adv., 9, 19949-19964. https://doi.org/10.1039/c9ra02238d.   DOI
27 Le, A.T., Pung, S.Y., Sreekantan, S., Matsuda, A. and Huynh, D.P. (2019), "Mechanisms of removal of heavy metal ions by ZnO particles", Heliyon, 5, 1-27. https://doi.org/10.1016/j.heliyon.2019.e01440.   DOI
28 Liu, D., Wang, Y., Xu, X., Xiang, Y., Yang, Z. and Wang, P. (2021), "Highly efficient photocatalytic Cr(VI) reduction by lead molybdate wrapped with D-A conjugated polymer under visible light", Catalysts 11, 1-15. https://doi.org/10.3390/catal11010106.   DOI
29 Punia, P., Dhar, R., Ravelo, B., Trukhanov, A.V., Panina, L.V., Thakur, P. and Thakur, A. (2021a), "Microstructural, optical and magnetic study of Ni - Zn nanoferrites", J. Supercond. Nov. Magn., 34(8), 2131-2140. https://doi.org/10.1007/s10948-021-05967-y.   DOI
30 Punia, P., Bharti, M.K., Dhar, R., Thakur, P. and Thakur, A. (2022a), "Recent advances in detection and removal of heavy metals from contaminated water", ChemBioEng. Rev., 9, 1-20. https://doi.org/10.1002/cben.202100053.   DOI
31 Reddy, D., Kumar, H. and Yun, Y.S. (2016), "Spinel ferrite magnetic adsorbents: Alternative future materials for water purification", Coord. Chem. Rev., 315, 90-111. https://doi.org/10.1016/j.ccr.2016.01.012.   DOI
32 Samad, A., Din M.I. and Ahmed, M. (2020), "Studies on batch adsorptive removal of cadmium and nickel from synthetic waste water using silty clay originated from Balochistan-Pakistan", Chinese. J. Chem. Eng., 28, 1171-1176. https://doi.org/10.1016/j.cjche.2019.12.016.   DOI
33 Huang, Y. and Keller, A.A. (2015), "EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment", Water. Res. 80, 159-168. https://doi.org/10.1016/j.watres.2015.05.011.   DOI
34 Pathania, A., Thakur, P., Trukhanov, A. V., Trunkhanov, S.V., Panina, L.V., Luders, U. and Tahkur, A. (2019), "Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application", Results Phys., 15, 102531. https://doi.org/10.1016/j.rinp.2019.102531.   DOI
35 Punia, P., Bharti, M.K., Chalia, S.,Dhar, R., Ravelo, B., Thakur, P. and Thakur, A. (2021b), "Recent advances in synthesis, charateriztion and applications of nanoparticles for contaminated water treatment - a review", Ceram. Int., 47(2), 1526-1550. https://doi.org/10.1016/j.ceramint.2020.09.050.   DOI
36 Ahmed, S., Chughtai, S., Keane M.A. (1998), "The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite", Sep. Purif. Technol. 13, 57-64. https://doi.org/10.1016/S1383-5866(97)00063-4.   DOI
37 Pham, M.T., Nishihama, S. and Yoshizuka, K. (2021), "Removal of chromium from water environment by forward osmosis system", MATEC Web Conf., 333, 1-5. https://doi.org/10.1051/matecconf/202133304007.   DOI
38 Lazarevic, Z.Z., Jovalekic, C., Milutinovic, A., Romevic, M.J. and Romcevic, N.Z. (2012), "Preparation and characterization of nano ferrites", Acta Phys. Pol. A., 121, 682-686. https://doi.org/10.12693/APhysPolA.121.682.   DOI
39 Rana, K., Thakur, P., Tomar, M., Gupta, V. and Thakur, A. (2016), "Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor method", AIP Conference Proceedings, 1731, 1-4. https://doi.org/10.1063/1.4947806.   DOI
40 Sezgin, N., Yalcin, A. and Koseoglu, Y. (2015), "MnFe2O4 nano nano spinels as potential sorbent for adsorption of chromium from industrial wastewater", Desalin. Water Treat., 57(35), 16496-16506. https://doi.org/10.1080/19443994.2015.1088808.   DOI