DOI QR코드

DOI QR Code

Experimental Study on the Setting Time and Compressive Strength of Nano-Micro Pozzolanic Binders as Cement Composites

포졸란 혼화재의 입자 크기 및 비표면적에 따른 응결시간 발현 및 압축강도 특성 평가

  • Kim, Won-Woo (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Yang, Keun-Hyeok (Department of Architectural Engineering, Kyonggi University)
  • 김원우 (한국건설기술연구원 구조연구본부) ;
  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공)
  • Received : 2022.09.02
  • Accepted : 2022.09.20
  • Published : 2022.09.30

Abstract

In this study, the setting time and compressive strength of cement paste composites applied with nano-micro pozzolanic binders were experimental analyzed. The pozzolanic binder was reduced initial and final setting time and the compressive strength was increased. Micro silica was effective in decrease the initial setting and final setting time and impressing the compressive strength. When two or more cement binders were used, the using of silica fume and a small amount of nano silica at reduced the setting time to 62-64 % to OPC cement and the compressive strength was increased to 117 %. A small amount of mixing the nano silica was effect to pore filling and pozzolanic activation. However, the addition of a chemical admixture should be considered when mixing table design because pozzolanic binders high specific surface area causes a decrease in cement composites flow.

본 연구에서는 포졸란 혼화재 혼입에 따라 응결시간과 역학적 특성을 평가하였다. 응결시간 발현 특성은 포졸란 혼화재를 사용하였을 때 감소되는 효과와 압축강도가 증가되는 특성을 평가하였다. 포졸란 혼화재의 경우 단독으로 사용할 경우 마이크로 실리카가 초결 및 종결시간 단축 및 압축강도 발현에 효과적이였다. 두가지 이상의 혼화재를 사용하였을 때는 실리카흄을 사용하면서 동시에 소량의 나노 실리카를 사용하는 것이 OPC 대비 응결시간이 62~64 %수준으로 감소하였으며, 강도 수준이 약 1.17배 증가로 성능증진에 효과적이었다. 나노 실리카가 소량의 혼입량으로 응결시간 감소 및 압축강도를 증진시킬 수 있는 것은 포졸란 반응을 일으킴과 동시에 작은 입자크기로 상대적으로 큰 입자로 구성되어있는 실리카 흄과 시멘트 사이의 공극채움 효과가 있는 것으로 판단된다. 하지만 나노 소재의 경우 높은 비표면적으로 흐름성 저하의 원인이 되기 때문에 배합 설계 시 화학혼화제의 첨가가 고려되어야 할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 22NANO-C156177-03)으로 수행되었습니다.

References

  1. ACI 234-R. (2006). Guide for the Use of SIlica Fume in Concrete.
  2. American Society for Testing and Materials C 109. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), West Conshohocken: ASTM International.
  3. American Society for Testing and Materials C 305. (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, West Conshohocken: ASTM International.
  4. Dong, S., Wang, Y., Ashour, A., Han, B., Ou, J. (2020). Nano/micro-structures and mechanical properties of ultra-high performance concrete incorporating graphene with different lateral sizes, Composites Part A : Applied Science and Manufacturing, 137, 106011. https://doi.org/10.1016/j.compositesa.2020.106011
  5. Goldman, A. Bentur, A. (1993). The influence of micro-fillers on enhancement of concrete strength, Cement and Concrete Research, 23, 962-972. https://doi.org/10.1016/0008-8846(93)90050-J
  6. Jimenez-Relinque, E., Rodriguez-Garcia, J.R., Castillo, A., Castellote, M. (2015). Characteristics and efficiency of photocatalytic cementitious materials: type of binder, roughness and microstructure, Cement and Concrete Research, 71, 124-131. https://doi.org/10.1016/j.cemconres.2015.02.003
  7. Karapati, S., Giannakopoulou, T., Todorova, N., Boukos, N., Antiohos, S., Papageorgiou, D., Chaniotakis, E., Dimotikali, D., Trapalis, C. (2014). TiO2 functionalization for efficient NOx removal in photoactive cement, Applied Surface Science, 319(15), 29-36. https://doi.org/10.1016/j.apsusc.2014.07.162
  8. Kim, W.W., Moon, J.H., Baek, C.W., Yang, K.H. (2021). Experimental study on the applicability of reactivity SiO2 nano-materials as cement composites, Korean Recycled Construction Resources Institute, 9(4), 529-536 [in Korean].
  9. Korean Standard L 5109. (2017). Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, Korean Standards Association.
  10. Korean Standard L 5201. (2021). Portland Cement, Korean Standards Association.
  11. Lee, N.K., Koh, K.T., Kim, M,O., Ryu, G.S. (2017). Uncovering the role of micro silica in hydration of ultra-high performance concrete(UHPC), Cement and Concrete Research, 104, 68-79 [in Korean].
  12. Liu, M., Tan, H., He, X. (2018). Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system, Construction and Building Materials, 194(10), 350-359.
  13. Li, H., Xiao, HG., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano particles, Composites: Part B, 35, 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  14. Mohamed, H. (2016). Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles, Journal of Thermal Analysis and Calorimetry, 126, 1077-1087. https://doi.org/10.1007/s10973-016-5715-0
  15. Micheli, D., Pastore, R., Vricela, A., Morles, R.B., MarchetI, M., Delfini, A., Moglie, F., Mariani Primiani, V. (2014). Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band, Materials Science and Engineering: B, 188, 119-129. https://doi.org/10.1016/j.mseb.2014.07.001
  16. Nili, M., Ehsani, A., Shabani, K. (2010). Influence of Nano-SiO2 and microsilica on concrete performance, Second International Conference on Sustainable Construction Materials and Technologies, 1-5.
  17. Poppe, A.M. De Schutter, G. (2006). Analytical hydration model for filler rich binders in self-compacting concrete, Journal of Advanced Concrete Technology, 4(2), 259-266. https://doi.org/10.3151/jact.4.259
  18. Richad, P., Cheyrezy, M. (1995). Composition of reactive powder concrete, Cement and Concrete Research, 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  19. Silica Fume Association. (2005). Silica Fume User's Manual. USA.
  20. Whatmore, R.W., Corbett, J. (1995). Nanotechnology in the marketplace, Computing and Control Journal, 6(3), 105-107.
  21. Ye, Q., Zhang, Z., Kong, D., Chen, R. (2005). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construction and Building Materials, 21(3), 539-545.
  22. Yu, R., Zhang, X., Hu, Y., Li, J., Zhou, F., Liu, K., Zhang, J., Wang, J., Shui, Z. (2022). Development of a rapid hardening ultra-high performance concrete(R-UHPC): from macro properties to micro structure, Construction and Building Materials, 329, 127188. https://doi.org/10.1016/j.conbuildmat.2022.127188
  23. Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., Nieto, P. (1996). Investigation of hydration and pozzolanic reaction in Reactive Powder Concrete (RPC) using 29Si NMR, Cement and Concrete Research, 26(1), 93-100. https://doi.org/10.1016/0008-8846(95)00197-2