• 제목/요약/키워드: specific plant

검색결과 2,636건 처리시간 0.028초

Update on the Effects of Sound Wave on Plants

  • Chowdhury, Md. Emran Khan;Lim, Hyoun-Sub;Bae, Hanhong
    • 식물병연구
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Plant growth is considered the sum of cell proliferation and subsequent elongation of the cells. The continuous proliferation and elongation of plant cells are vital to the production of new organs, which have a significant impact on overall plant growth. Accordingly, the relationship between environmental stimuli, such as temperature, light, wind, and sound waves to plant growth is of great interest in studies of plant development. Sound waves can have negative or positive effects on plant growth. In this review paper we have summarized the relationship between sound waves and plant growth response. Sound waves with specific frequencies and intensities can have positive effects on various plant biological indices including seed germination, root elongation, plant height, callus growth, cell cycling, signaling transduction systems, enzymatic and hormonal activities, and gene expression.

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.425-431
    • /
    • 2022
  • Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

The Relationship between the Sugar Preference of Bacterial Pathogens and Virulence on Plants

  • Ismaila Yakubu;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • 제39권6호
    • /
    • pp.529-537
    • /
    • 2023
  • Plant pathogenic bacteria colonize plant surfaces and inner tissues to acquire essential nutrients. Nonstructural sugars hold paramount significance among these nutrients, as they serve as pivotal carbon sources for bacterial sustenance. They obtain sugar from their host by diverting nonstructural carbohydrates en route to the sink or enzymatic breakdown of structural carbohydrates within plant tissues. Despite the prevalence of research in this domain, the area of sugar selectivity and preferences exhibited by plant pathogenic bacteria remains inadequately explored. Within this expository framework, our present review endeavors to elucidate the intricate variations characterizing the distribution of simple sugars within diverse plant tissues, thus influencing the virulence dynamics of plant pathogenic bacteria. Subsequently, we illustrate the apparent significance of comprehending the bacterial preference for specific sugars and sugar alcohols, postulating this insight as a promising avenue to deepen our comprehension of bacterial pathogenicity. This enriched understanding, in turn, stands to catalyze the development of more efficacious strategies for the mitigation of plant diseases instigated by bacterial pathogens.

MicroTom - A Model Plant System to Study Bacterial Wilt by Ralstonia solanacearum

  • Park, Eun-Jin;Lee, Seung-Don;Chung, Eu-Jin;Lee, Myung-Hwan;Um, Hae-Young;Murugaiyan, Senthilkumar;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제23권4호
    • /
    • pp.239-244
    • /
    • 2007
  • MicroTom is a miniature tomato plants with various properties that make it as a model system for experiments in plant molecular biology. To extend its utility as a model plant to study a plant - bacterial wilt system, we investigated the potential of the MicroTom as a host plant of bacterial wilt caused by Ralstonia solanacearum. We compared the disease progress on standard tomato and MicroTom by two inoculation methods, root dipping and soil drenching, using a race 1 strain GMI1000. Both methods caused the severe wilting on MicroTom comparable to commercial tomato plant, although initial disease development was faster in root dipping. From the diseased MicroTom plants, the same bacteria were successfully reisolated using semiselective media to fulfill Koch's postulates. Race specific and isolate specific virulence were investigated by root dipping with 10 isolates of R. solanacearum isolated from tomato and potato plants. All of the tested isolates caused the typical wilt symptom on MicroTom. Disease severities by isolates of race 3 was below 50 % until 15 days after inoculation, while those by isolates of race 1 reached over 50% to death until 15 days. This result suggested that MicroTom can be a model host plant to study R. solanacearum - plant interaction.

SCAR Marker Linked with A1 Mating Type Locus in Phytophthora infestans

  • Zhang Xuan-Zhe;Seo Hyo-Won;Ahn Won-Gyeong;Kim Byung-Sup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.724-730
    • /
    • 2006
  • A sequence characterized amplified region (SCAR) marker, which was tightly linked with the A1 mating type locus in Phytophthora infestans, was developed. During the random amplified polymorphic DNA-based phylogenic studies of 33 isolates of P infestans collected from year 2002 to 2004, we found an A1 mating type-specific DNA fragment. This 573-bp DNA fragment was generated only in the genomic DNA of the A1 mating types, when OPC-5 primer was used. Based on the specific DNA sequence, we designed the primer sets for generating the A1 mating type-specific 569-bp DNA fragment. When 33 genomic DNAs of P. infestans were subjected to PCR amplification using different primer combinations, the A1 mating type-specific DNA was amplified, when LB-1F and LB-2R primers were used. The specific 569-bp DNA fragment was generated only from all 18 A1 strains, but not from 15 A2 mating type strains. These results corresponded to the mating type discriminating bioassay of 33 isolates of P. infestans. Therefore, the primer combination of LB-1F/LB2R was chosen as a SCAR marker. Overall, this study indicates that the SCAR marker could be developed into a useful tool for mating type determination of P. infestans.

Flavonoid 배당체 생산을 위한 Scutellaria baicalensis G. 식물 세포 배양에서 생물반응기 운전전략 (Bioreactor Operating Strategy in Scultellaria baicalensis G. Plant Cell Culture for the Production of Flavone Glycosides)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.259-267
    • /
    • 1998
  • Optimal feeding strategies in bioreactor operation of Scutellaria baicalensis G. plant cell culture were investigated to maximize the production of flavone glycosides by using a structured kinetic model which can predict culture growth and flavone glycosides synthesis in a rigorous, quantitative manner. For the production of baicalin and wogonin-7-0-GA, the strategies for glucose feeding into Scutellaria baicalensis G. plant cell culture were proposed based on the model, which are a periodic fed-batch operation with maintenance of cell viability and of specific production rate respectively, and a perfusion operation with maintenance of specific production rate for baicalin and wogonin-7-0-GA. Simulation results showed that the highest volumetric concentration of flavone glycosides was obtained in a periodic fed-batch operation with maintenance of cell viability among all the suggested strategies. In the periodic fed-batch operations, the higher volumetric production of flavone glycosides was achieved compared with that in the perfusion operation. It can be concluded that a periodic fed-batch operation with maintenance of cell viability would be the optimal and practical operating strategy of Scutellaris baicalensis G. plant cell culture for the production of flavone glycosides.

  • PDF

Molecular characterizations of phosphoprotein of rabies virus circulating in Korea

  • Kim, Ha-Hyun;Yang, Dong-Kun;Jeon, Jeong Kuk;Cho, Soo-Dong;Song, Jae-Young
    • 대한수의학회지
    • /
    • 제52권1호
    • /
    • pp.9-18
    • /
    • 2012
  • Rabies is a major zoonotic disease that causes approximately 55,000 human deaths worldwide on an annual basis. The nucleocapsid protein and glycoprotein genes of the Korean rabies virus (RABV) have been subjected to molecular and phylogenetic analyses. Although the phosphoprotein (P) has several important functions in viral infection and pathogenicity, the genetic characterizations of the P of Korean RABV isolates have not yet been established. In the present study, we conducted genetic analyses of P genes of 24 RABV isolates circulating in the Republic of Korea (hereafter, Korea) from 2008 to 2011. This study revealed that the P genes of Korean RABVs are genetically similar to those of RABV strains of lyssavirus genotype I including V739 (dogs, Korea), NNV-RAB-H (humans, India), NeiMeng925 (raccoon dogs, China), and RU9.RD (raccoon dogs, Russia). Among Korean isolates, the RABV P genes showed low variability in the variable domains among Korean isolates; they had specific consensus sequences and amino acid substitutions capable of identifying geographic characteristics and retained specific sequences thought to be important for viral function. These results provide important genetic characteristics and epidemiological information pertaining to the P gene of the Korean RABV.

Screening of Sterol Biosynthesis Inhibitors from Natural Products Using Recombinant Yeast Carrying Human Lanosterol Synthase

  • Sung, Chung-Ki;Kim, Eun-A;Chu, Yun-Ho;Shibuya, Masaaki;Ebizuka, Yutaka
    • Natural Product Sciences
    • /
    • 제9권4호
    • /
    • pp.299-303
    • /
    • 2003
  • For the screening of inhibitors of sterol biosynthesis from natural products, a simple and rapid assay method was developed using recombinant yeast carrying human lanosterol synthase, main target of this assay method. Sterol biosynthesis inhibition activity was monitored only by the inhibition of growth of the recombinant yeast. By changing the substrate, this assay method can figure out which step is inhibited in the sterol biosynthesis by the test material. With this assay method total 102 plant samples were screened for their inhibitory activity of sterol biosynthesis. Among plant water extracts screened, 11 plant samples showed inhibitory activity on sterol biosynthesis in ergosterol (-) medium. For selection of the specific inhibitory materials, 11 plant samples were reassayed in ergosterol (+) medium. After all 5 plant samples, Abutilon avicennae Gaertn. (stem), Alnus japonica Steud. (stem), Amaranthus mangostanus L. (aerial part), Philadelphus schrenckii Pupr. (leaf) and Pimpinelia brachycarpa Nakai (aerial part), showed specific inhibitory activity.

A Subpopulation of RNA3 of Cucumber mosaic virus Quasispecies

  • Park, Seung-Kook;Park, Sun-Hee;Yoon, Ju-Yeon;Park, Jang-Kyung;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제19권4호
    • /
    • pp.210-216
    • /
    • 2003
  • This study examined the existence of genetically diverse population of Cucumber mosaic virus (CMV), known as quasispecies, from lily, Nicotiana benthamiana and from purified virions. Based on the conserved sequences of CMV lily isolates in intergenic region (IR) on RNA3, the genetic variation of IR from three different sources was investigated by a specific restriction endonuclease hydrolysis of amplified reverse transcription-polymerase chain reaction (RT-PCR) products using virus-specific primers, and was compared with IR sequences. The IR nucleotide sequences of CMV lily isolates were highly conserved, however, quasispecies was detected from all three sources in low level, containing sub-populations of RNA3. These subpopulations of RNA3 were inoculated onto zucchini squash by in vitro transcripts from corresponding full-length cDNA clones together with Eny RNA1 and 2 transcripts. The systemic symptom of zucchini plants infected by these quasispecies was chlorotic spotting, which was milder than severe mosaic and stunt symptom caused by Eny-CMV. The severity of symptom was correlated with RNA accumulation of viruses. These results suggest that the genome of CMV lily isolates consists of quasispecies populations.

Molecular Biology of Secondary Growth

  • Han, Kyung-Hwan
    • Journal of Plant Biotechnology
    • /
    • 제3권2호
    • /
    • pp.45-57
    • /
    • 2001
  • Trees have the ability to undergo secondary growth and produce a woody body. This tree-specific growth is affected by the secondary vascular system and the developmental continuum of secondary phloem and xylem. Secondary growth is one of the most important biological processes on earth. Considering its economic and environmental significance, our knowledge of tree growth and development is surprisingly limited. Trees have received little attention as model species in plant science, as most Plant biology questions can be best addressed by using herbaceous model species, such as Arabidopsis. Furthermore, tree biology is difficult to study mainly due to the inherent problems of tree species, including large size, long generation time, large genome size, and recalcitrance to biotechnological manipulations. Despite all of this, one must rely on trees as models to study tree-specific questions, such as secondary growth, which cannot be studied effectively in non-woody model species. Recent advances in genomics technology provide a unique opportunity to overcome these inherent tree-related problems. Several groups, including our own, have been successful in studying the biology of wood formation with a variety of hardwood and softwood species. In this article, 1 first review the current understanding of tree growth and then discuss the recent attempts to fully explore and realize the potential of molecular biology as a tool for enhanced understanding of secondary growth.

  • PDF