Browse > Article
http://dx.doi.org/10.5423/PPJ.2007.23.4.239

MicroTom - A Model Plant System to Study Bacterial Wilt by Ralstonia solanacearum  

Park, Eun-Jin (Department of Applied Biology, Dong-A University)
Lee, Seung-Don (Research Management Division, Research and Development Bureau, RDA)
Chung, Eu-Jin (Department of Applied Biology, Dong-A University)
Lee, Myung-Hwan (Department of Medical Bioscience, Dong-A University)
Um, Hae-Young (Department of Applied Biology, Dong-A University)
Murugaiyan, Senthilkumar (Department of Applied Biology, Dong-A University)
Moon, Byung-Ju (Department of Applied Biology, Dong-A University)
Lee, Seon-Woo (Department of Applied Biology, Dong-A University)
Publication Information
The Plant Pathology Journal / v.23, no.4, 2007 , pp. 239-244 More about this Journal
Abstract
MicroTom is a miniature tomato plants with various properties that make it as a model system for experiments in plant molecular biology. To extend its utility as a model plant to study a plant - bacterial wilt system, we investigated the potential of the MicroTom as a host plant of bacterial wilt caused by Ralstonia solanacearum. We compared the disease progress on standard tomato and MicroTom by two inoculation methods, root dipping and soil drenching, using a race 1 strain GMI1000. Both methods caused the severe wilting on MicroTom comparable to commercial tomato plant, although initial disease development was faster in root dipping. From the diseased MicroTom plants, the same bacteria were successfully reisolated using semiselective media to fulfill Koch's postulates. Race specific and isolate specific virulence were investigated by root dipping with 10 isolates of R. solanacearum isolated from tomato and potato plants. All of the tested isolates caused the typical wilt symptom on MicroTom. Disease severities by isolates of race 3 was below 50 % until 15 days after inoculation, while those by isolates of race 1 reached over 50% to death until 15 days. This result suggested that MicroTom can be a model host plant to study R. solanacearum - plant interaction.
Keywords
bacterial wilt; MicroTom; Ralstonia solanacearum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Bacterial Wilt: the Disease and its Causative Agent Pseudomonas solanacearum. ed. By A. C. Hayward, and G L. Hartman, P. 127-135. CAB International, Oxford, UK
2 Izawa, T. and Shimamoto, K 1996. Becoming a model plant: the importance of rice to plant science. Trends Plant Sci. 1 :95-99   DOI   ScienceOn
3 Kang, Y-G., Chung, Y-H. and Yu, Y-H. 2004. Relationship between the population of Ralstonia solanacearum in soil and the incidence of bacterial wilt in the naturally infested tobacco fields. Plant Pathol. J. 20:289-292   DOI   ScienceOn
4 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87   DOI   ScienceOn
5 Scott, J. W. and Harbaugh, B. K. 1989. MicroTom-a minature dwarf tomato. Fla. Agr. Exp. Sta. Circ. 370:1-6
6 Roberts, P. D., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451   DOI
7 Boucher, C. A., Barberis, P., Trigalet, A. P. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 131:2449-2457
8 Meissner, R., Jacobson, Y., Melame, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y. and Levy, A. 1997. A new model system for tomato genetics. Plant J. 12:1465-1472   DOI   ScienceOn
9 Sequeira, L. and Averre, C. W., III. 1961. Distribution and pathogenicity of strains of Pseudomonas solanacearum from virgin soils in Costa Rica. Plant Dis. Rep. 45:435-440
10 Leutwiler, L. S., Hough-Evans, B. R. and Meyerowitz, E. M. 1984. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194:15-23   DOI
11 Bertolla, F., Frostegard, A., Brito, B., Nesme, X. and Simonet, P. 1999. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol. Plant-Microbe Interact. 12:467-472   DOI   ScienceOn
12 Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS press, St. Paul, USA
13 Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287   DOI   ScienceOn
14 Smith, J. J., Offord, L. C, Holderness, L. C., Holderness, M. and Saddler, G. G. 1995. Genetic diversity of Burkholderia solanacearum race 3 in Kenya. Appl. Environ. Microbiol. 61:4263-4268
15 Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695
16 Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25   과학기술학회마을   DOI   ScienceOn
17 Sun, H-J., Uchii, S., Watanabe, S. and Ezura, H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47:426-431   DOI   ScienceOn
18 Takahashi, H., Shimizu, A., Arie, T., Rosmalawati, S., Fukushima, S., Kikuchi, M., Hikichi, Y., Kanda, A., Takahashi, A., Kiba, A., Ohnishi, K., Ichinose, Y., Taguchi, F., Yasuda, C., Kodama, M., Egusa, M., Masuta, C., Sawada, H., Shibata, D., Hori, K. and Watanabe, Y. 2005. Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. J. Gen. Plant Pathol. 71:8-322   DOI
19 Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13:307-317   DOI
20 Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23:585-595   DOI
21 Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292   DOI   ScienceOn
22 Ciampi, L. and Sequeira, L. 1980. Influence of temperature on virulence of race 3 strains of Pseudomonas solanacearum. Am. Potato J. 57:307-317   DOI
23 Vasse, J., Frey, P. and Trigalet, A. 1995. Microscopic studies of intercellular infection and protoxylem invasions of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 8:241-251   DOI   ScienceOn
24 Dan, Y., Yan, H., Munyikwa, T., Dong, J., Zhang, Y. and Armstrong, C. L. 2006. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep. 25:432-441   DOI
25 McCormick, S., Niedmeyer, J., Fry, J., Barnason, A., Horsh, K and Fraley, R. 1986. Leaf disc transformation on cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5:81-84   DOI   ScienceOn
26 Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87: 1264-1271   DOI   ScienceOn