• Title/Summary/Keyword: specific discharge

Search Result 608, Processing Time 0.033 seconds

Fabrication and Characterization of Spherical Carbon-Coated Li3V2(PO4)3 Cathode Material by Hydrothermal Method with Reducing Agent

  • Moon, Jung-In;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.519-524
    • /
    • 2019
  • Spherical $Li_3V_2(PO_4)_3$ (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using $N_2H_4$ as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as $LiV(P_2O_7)$, $Li(VO)(PO_4)$ and $Li_3(PO_4)$ can be obtained after calcination at $800^{\circ}C$ for 4 h. SEM and TEM images show that the particle sizes are $0.5{\sim}2{\mu}m$ and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of $0.01mV\;s^{-1}$ and at room temperature. At potentials between 3.0 and 4.8 V, the third $Li^+$ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of $118mAh\;g^{-1}$ in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.

Venous Thromboembolism Following Acute Ischemic Stroke: A Prospective Incidence Study

  • Ko, Keun Hyuk;Kang, Ji-Hoon;Kang, Sa-Yoon;Lee, Jung Seok;Song, Sook-Keun;Oh, Jung-Hwan;Kim, Joong-Goo;Han, Eun Young;Lee, Ho Kyu;Choi, Jay Chol
    • Journal of Neurocritical Care
    • /
    • v.11 no.2
    • /
    • pp.102-109
    • /
    • 2018
  • Background: A sians were known to have a relatively lower incidence of venous thromboembolism (VTE), and there is insufficient evidence to suggest a specific D-dimer threshold level for screening VTE in patients with acute stroke. Methods: We prospectively enrolled patients with acute ischemic stroke admitted to Jeju National University Hospital. The inclusion criteria were: 1) aged ${\geq}18$ years, 2) admission within seven days of symptom onset, and 3) an initial National Institute of Health Stroke Scale (NIHSS) score >1 for the affected lower limb. Ultrasound scans of the lower limbs and plasma D-dimer assays were performed on days 7-14 and 15-28 after stroke onset. Results: Of 285 patients admitted during the study period, 52 patients met inclusion criteria (mean age 74.5, male 40.4%, median initial NIHSS score 12, and unable to walk unassisted at discharge 76.9%). During 7-14 days, 23 of 52 patients (44.2%) had a D-dimer level above 1.57 mg/L, and 9.6% had a level above 5.50 mg/L. Proximal deep vein thrombosis (DVT) was detected in 3 patients (5.8%, 95% confidence Interval 1.2-16.0%) on ultrasound examination. All DVTs were found in elderly female patients with severe leg weakness. No patient was diagnosed with pulmonary embolism during the study period. Conclusion: The incidence of VTE seems to be very low among Korean patients with acute ischemic stroke. Advanced age, female sex, and severe leg weakness were important risk factors for developing DVT in this study.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Research of Solid Propellant Electrostatic Sensitivity in Confinement (밀폐공간에서의 추진제 정전기 민감도에 대한 연구)

  • Choi, Jiyong;Lee, Seonjae;Kim, Jihong;Kim, Jinyong;Park, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.73-78
    • /
    • 2020
  • The main reasons that ignite the propellant in the process of producing solid rocket motor are worker mistakes, wrong working process, mechanical defects, impact, friction, electrostatic and short circuits. In the past decades, many accidents have occurred in the process of producing solid rocket motor, accidents investigation have confirmed that the sensitivity of electrostatic is very high under specific condition. In this paper, we analyzed overseas accident cases and measured the sensitivity of electrostatic in the situation of confinement and pressure load by considering the manufacturing process. As a result of the test, the sensitivity of propellant was increased in the situation of confinement and pressure load and the propellant reacted more sensitively to electrostatic in the situation of confinement than pressure load.

Water resource vulnerability assessment of South Korea using hydrological model (수문 모형의 활용을 통한 국내 수자원 취약성 평가)

  • Won, Kwang Jai;Chung, Eun-Sung;Kim, Soo Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.264-264
    • /
    • 2015
  • 최근 기후변화는 우리 삶에 다양한 영향을 미치고 있으며, 이에 따른 수문순환 변화 역시 자명하게 받아들이고 있다. 이에 따라 수자원 취약성 평가 및 대책에 관한 연구는 다양하게 진행되고 있는 실정이다. 하지만 국내의 경우 전체 유역에 대한 수자원 취약성 평가 연구는 부족한 실정이다. 따라서 본 연구에서는 국내 총 12 수계인 한강, 안성천, 금강, 삽교천, 영산강, 섬진강, 탐진강, 만경강, 동진강, 낙동강, 태화강, 형산강 유역에 대한 수자원 취약성 평가를 실시하였다. 평가 방법으로는 장기간에 걸친 다양한 토양의 특징, 토지이용, 관리상태의 변화에 따른 크고 복잡한 유역의 유출량을 추정하기 위해 개발된 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 수문 모형을 구축하였고, 유출 관련 매개변수 최적화 작업은 SWAT-CUP 모형을 이용하였다. 최적화된 매개변수의 적용을 통해 각 유역별 유출량을 산정하였다. 그 결과 2009년과 2011년은 한강, 낙동강, 금강, 영산강순 이였으며, 2010년은 낙동강, 한강, 금강, 영산강순 이였다. 면적별 유출량인 비유량(specific discharge)을 산정한 결과, 2009년에는 영산강, 낙동강, 금강, 한강순 이며, 2010년에는 영산강, 금강, 낙동강, 한강순 이였으며, 2011년에는 금강, 한강, 영산강, 낙동강 순을 보였다. 또한, 인구당 유출량 산정 결과 2009년에는 영산강, 금강, 낙동강, 한강순 이며, 2010년에는 영산강, 금강, 낙동강, 한강순 이며, 2011년에는 영산강, 금강, 낙동강, 한강순 이었다. 이를 바탕으로 국내 총 12 수계에 대한 수자원 취약성을 산정해보았다. 대응변수는 이수의 수요 및 공급적인 측면에서 구분하였으며, 사회/경제, 물 이용, 환경, SWAT으로 구성하였습니다. 수자원 취약성 평가를 위해 다기준의사결정기법(MCDM, Multi-Criteria Decision Making) 중 하나인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)기법을 사용하였다. 산정 결과 삽교천, 동진강, 형산강, 안성천, 섬진강, 만경강, 낙동강, 영산강, 태화강, 금강, 한강, 탐진강 순 이였다. 본 연구 결과는 향후 다중 공간에 구축한 고해상도 모형을 통해 국내 수문상황 진단 및 고해상도 미래 수문 시나리오 생산을 통한 수자원 관리에도 활용될 전망이며, 기후변화 취약성 평가를 위한 지표 개발에 이용될 예정이다.

  • PDF

Is Stent-Assisted Coil Embolization for the Treatment of Ruptured Blood Blister-Like Aneurysms of the Supraclinoid Internal Carotid Artery Effective? : An Analysis of Single Institutional Experience with Pooled Data

  • Roh, Haewon;Kim, Junwon;Suh, Sang-il;Kwon, Taek-Hyun;Yoon, Wonki
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.217-228
    • /
    • 2021
  • Objective : Given the high risk of rebleeding and recurrence of blood blister-like aneurysms (BBAs), we treated ruptured BBAs of the internal carotid artery (ICA) with stent-assisted coil embolization (SAC). This study aimed to evaluate the efficacy and safety of SACs. Methods : We retrospectively reviewed clinical and radiological data from eight patients with ruptured BBAs of the supraclinoid ICA. The modified Rankin Scale (mRS) was used to assess clinical outcomes, while radiological outcomes were evaluated on angiographs. For a pooled analysis, data from literature reporting the outcomes of ruptured BBAs treated with SAC were collected and analyzed in conjunction with our data. Results : In our cohort, the mean Raymond classification score was 1.57±0.53 immediately after initial endovascular treatment. There were no perioperative complications or rebleeding events during the follow-up period. The mean mRS score at patient discharge was 1.00±0.81 and improved to 0.28±0.48 by the last follow-up day. The recurrence rate was 25% with an asymptomatic presentation and successful treatment with multiple stent insertion. Pooled analysis of 76 cases of SAC revealed a complete occlusion rate immediately after treatment of 54.8%, rebleeding rate 7.94%, and recurrence rate 24.2%. Good clinical outcomes with mRS score 0-2 were observed in 89.9% by the last clinical follow-up. Total mortality rate was 7.7%. Conclusion : This treatment appears to not only minimize the hemodynamic burden on the fragile dome specific to this type of aneurysm, but also provides an opportunity for safe and effective treatment in recurrent cases.

Patient-reported satisfaction after robot-assisted hysterectomy among Korean patients with benign uterine disease

  • Park, Suyeon;Lee, Young-eun;Cho, Seong-Sik;Park, Sung-ho;Park, Sung Taek
    • Obstetrics & gynecology science
    • /
    • v.61 no.6
    • /
    • pp.675-683
    • /
    • 2018
  • Objective This study aimed to evaluate patient-reported satisfaction following robot-assisted hysterectomy due to benign uterine disease, and to identify the factors associated. Methods We used a questionnaire to evaluate patients' satisfaction with robot-assisted hysterectomy. The questions concerned overall patient-reported satisfaction and specific factors affecting satisfaction, including postoperative pain, return to daily life, the hospital experience, wounds, cost, the doctor-patient relationship, whether expectations were met, and whether detailed information was provided. We also collected data from patient records, such as uterine weight, rate of pelvic adhesion, operation time, rate of transfusion, delayed discharge, and readmission. One hundred patients who underwent robot-assisted hysterectomy participated in the study. Seventy-three fully completed questionnaires were returned. Results The majority of patients (95.9%) were satisfied with robot-assisted hysterectomy. The doctor-patient relationship, whether expectations were met, the hospital experience, wounds, and whether detailed information was provided were statistically significant factors influencing patients' overall satisfaction. Payment of fees and clinical and surgical outcomes did not significantly influence patients' overall satisfaction. Conclusion Our findings show that most patients reported high levels of satisfaction following robot-assisted hysterectomy, regardless of cost or clinical and surgical outcomes. Therefore, if gynecologists consider robot-assisted hysterectomy suitable for patients they need not hesitate based on potential costs; they should feel confident in recommending the procedure to patients.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

Asymmetric Supercapacitors Based on Co3O4@MnO2@PPy Porous Pattern Core-Shell Structure Cathode Materials

  • Wang, Zihan;Pan, Shuang;Wang, Bing;Qi, Jingang;Tang, Lidan;Liu, Liang
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.346-357
    • /
    • 2021
  • In recent years, supercapacitors have been developed rapidly as a rechargeable energy storage device. And the performance of supercapacitors is depending on electrode materials, the preparation method and performance of electrode materials have become the primary goal of scientific development. This study synthesizes Co3O4@MnO2@PPy cathode material with porous pattern core-shell structure by hydrothermal method and electrodeposition. The result samples are characterized by X-ray diffraction transmission/scanning electron microscope, and X-ray photoelectron spectroscopy. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by PPy depositing. The specific capacitance of Co3O4@MnO2@PPy is 977 F g-1 at 1 A g-1, the capacitance retention rate of 105%. Furthermore, the electrochemical performance of Co3O4@MnO2@PPy//AC asymmetric supercapacitor assembles with AC as the negative electrode material is significantly better than that of MnO2//AC and Co3O4@MnO2//AC. The capacity of Co3O4@MnO2@PPy//AC is 102.78 F g-1. The capacity retention rate is still 120% for 5000 charge-discharge cycles.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.