Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01795

Asymmetric Supercapacitors Based on Co3O4@MnO2@PPy Porous Pattern Core-Shell Structure Cathode Materials  

Wang, Zihan (Department of Materials Science and Engineering, Liaoning University of Technology)
Pan, Shuang (Department of Materials Science and Engineering, Liaoning University of Technology)
Wang, Bing (Department of Materials Science and Engineering, Liaoning University of Technology)
Qi, Jingang (Department of Materials Science and Engineering, Liaoning University of Technology)
Tang, Lidan (Department of Materials Science and Engineering, Liaoning University of Technology)
Liu, Liang (Department of Materials Science and Engineering, Liaoning University of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.3, 2021 , pp. 346-357 More about this Journal
Abstract
In recent years, supercapacitors have been developed rapidly as a rechargeable energy storage device. And the performance of supercapacitors is depending on electrode materials, the preparation method and performance of electrode materials have become the primary goal of scientific development. This study synthesizes Co3O4@MnO2@PPy cathode material with porous pattern core-shell structure by hydrothermal method and electrodeposition. The result samples are characterized by X-ray diffraction transmission/scanning electron microscope, and X-ray photoelectron spectroscopy. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by PPy depositing. The specific capacitance of Co3O4@MnO2@PPy is 977 F g-1 at 1 A g-1, the capacitance retention rate of 105%. Furthermore, the electrochemical performance of Co3O4@MnO2@PPy//AC asymmetric supercapacitor assembles with AC as the negative electrode material is significantly better than that of MnO2//AC and Co3O4@MnO2//AC. The capacity of Co3O4@MnO2@PPy//AC is 102.78 F g-1. The capacity retention rate is still 120% for 5000 charge-discharge cycles.
Keywords
Asymmetric Supercapacitor; Manganese Dioxide; Cathode Materials; Core-Shell Structure; Electrochemical Performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo W, Hou L, Hou B, Guo Y L, J. Alloys Compd., 2017, 708, 524-530.   DOI
2 L. P. Khoroshun, Int. Appl. Mech., 2019, 55(2), 187-198.   DOI
3 Bastian Krueger, Luis Balboa, Jan Frederik Dohmann, ChemElectroChem., 2020, 7(17), 3590-3596.   DOI
4 Deivis Plausinaitis, Linas Sinkevicius, Urte Samukaite-Bubniene, Talanta., 2020, 220, 121414.   DOI
5 Smita C. Deogaonkar, J. Text. Inst., 2020, 111(10), 1530-1537.   DOI
6 Murat Ates, Ozge Kuzgun, Plastics, Rubber and Composites 2020, 49(8), 342-356.   DOI
7 Yuan J J, Chen C H, Hao Y, Zhang X K, Zou B, Agrawal R, Wang C L, Yu H J, Zhu X R, Yu Y, Xiong, Z Z, Luo Y, Li H X, Xie Y M, J. Alloys Compd., 2017, 691, 34-39.   DOI
8 Liu J L, Zhou W W, Lai L F, Yang H P, Lim S H, Zhen Y D, Yu T, Shen Z X, Lin J Y, Nano energy, 2013, 2(5), 726-732.   DOI
9 Khan H Y, Malook K, Shah M, J. Mater. Sci. Mater. Electron., 2018, 29(11), 9090-9098.   DOI
10 Ahmed Bakry, J. Appl. Polym. Sci., 2021, 138(1), 49643.   DOI
11 Dafeng Zhang, Yunxiang Tang, Xiaoxue Qiu, Jie Yin, Xipeng Pu, J. Alloys Compd., 2020, 845, 155569.   DOI
12 Qingwei Lin, Mingjun Fan, Xue Peng, Jianmin Ma, Biyun Liu, J. Hazard. Mater., 2020, 400, 123167.   DOI
13 Wang N, Zhao P, Liang K, Yao M Q, Yang Y, Hu W C, Chem. Eng. J., 2017, 307, 105-112.   DOI
14 Huang M, Zhang Y X, Li F, Zhang L L, Wen Z Y, Liu Q, J. Power Sources., 2014, 252, 98-106.   DOI
15 Yang C Z, Zhou M, Xu Q, Phys. Chem. Chem. Phys., 2013, 15(45), 19730-19740.   DOI
16 Borysiewicz M A, Ekielski M, Ogorzalek Z, Wzorek M, Kaczmarsk J, Wojciechowski T, Nanoscale., 2017, 9(22), 7577- 7589.   DOI
17 Hu C C, Huang Y H, Chang K H, J. Power Sources., 2002, 108(1-2), 117-127.   DOI
18 Fan W, Wen Z Y, Shen C, Wu X W, Liu J J, Phys. Chem. Chem. Phys., 2015, 18(2), 926-931.   DOI
19 Jie Wang, Jing Tang, Yunling Xu, Bing Ding, Zhi Chang, Ya Wang, Xiaodong Hao, Hui Dou, Jung Ho Kim, Xiaogang Zhang, Yusuke Yamauchi, Nano Energy., 2016, 28, 232-240.   DOI
20 Simon P, Gogotsi Y, Dunn B, Science., 2014, 343(6176), 1210-1211.   DOI
21 Xia X H, Chao D L, Zhang Y Q, Zhan J Y, Zhong Y, Wang X L, Wang Y D, Shen Z X, Tu J P, Fan H J. Small., 2016, 12(22), 3048-3058.   DOI
22 Krzysztof Fic, Anetta Platek, Justyna Piwek, Frackowiak, Elzbieta. Mater. Today., 2018, 21(4), 437-454.   DOI
23 Yunlong Yang, Kuiwen Shen, Ying Liu, Yongtao Tan, Xiaoning Zhao, Jiayu Wu, Xiaoqin Niu, Fen Ran. Nanomicro Lett., 2017, 9(1), 1-25.
24 Wang Nannan, Ding Guopeng, Yang Xiaohong, Zhao Lijun, Mater. Lett., 2019, 255, 126589.   DOI
25 Kasturi Palanisamy Rupa, Ramasamy Harivignesh, Meyrick Danielle, Yun Sung Lee, J. Colloid Interface Sci., 2019, 554, 142-156.   DOI
26 Wang Chao, Wang Jing, Xiao Xiang, Guobin Zhong, Shijia Wu, Xu Kaiqim, Zhao Wei, Wei Su, Jie Zeng,Baojun Wu, Weili Zhang, Changcheng Wu, Zhiqiang Shi, Chin Chem Lett., 2019, 30(6), 1269-1272.   DOI
27 Qiqi Zhuang, Jingpei Cao, Yan Wu, Xiaoyan Zhao, J. Colloid Interface Sci., 2020, 567, 347-356.   DOI
28 Jiaye Zhu, Qingsheng Wu, Jiangfeng Li, Chemistry Select., 2020, 5(33), 10407-10423.
29 Le Tao, Bidan Gerard, Gentile Pascal, Billon Florence, Debiemme-Chouvy Catherine, Perrot Hubert, Sel Ozlem, Aradilla David, Mater. Lett., 2019, 240, 59-61.   DOI
30 Zhumu Fu, Longlong Zhu, Fazhan Tao, Pengju Si, Int. J. Hydrog. Energy., 2020, 45(15), 8875-8886.   DOI
31 Li X B, Xu G R, Ceram. Int., 2017, 43(12), 8963-8969.   DOI
32 Yuxin Wang, Bingsi Liu, Zhiqiang Shi, Fengdan Liu, Trans. Tianjin Univ., 2012, 18(3), 217-223.   DOI
33 Huang Y X, Peng L L, Liu Y, Zhao G J, Chen J Y, Yu G H, ACS Appl. Mater. Interfaces., 2016, 8(24), 15205- 15215.   DOI
34 Yu D S, Dai L M. J. Phys. Chem. Lett., 2010, 1(2), 467-470.   DOI
35 Hui G, Fan L Z, Zhang H, Qu X, Electrochim. Acta., 2011, 56(2), 964-968.   DOI
36 Zhao D P, Liu H Q, Wu X, Nano Energy., 2019, 57, 363-370.   DOI
37 Deng M, Yang B, Yong H U, J. Mater. Sci., 2005, 40(18), 5021-5023.   DOI
38 Patake V D, Lokhande C D, Joo O S, Appl. Surf. Sci., 2009, 255(7), 4192-4196.   DOI
39 Xu B, Yu L, Sun M, Ye F, Zhong Y H, Cheng G, Wang H, Mai Y L, RSC Advance., 2017, 7(24), 14910-14916.   DOI
40 Jeyasubramanian K, Gokul R T, Purushothaman S, Kumar M V, Sushmitha I, Electrochim. Acta., 2017, 227, 401-409.   DOI
41 Patil U M, Salunkhe R R, Gurav K V, Lokhande C D, Appl. Surf. Sci., 2008, 255(5), 2603-2607.   DOI
42 Kim G P, Sun H H, Manthiram A, Nano Energy., 2016, 30, 130-137.   DOI
43 Beguin F, Presser V, Balducci A, Frackowiak E. Adv. Mater., 2014, 26(14), 2219-2251.   DOI
44 Daisuke Tashima, Masaki Hirano, Satoshi Kitazaki, Takuya Eguchi, Seiji Kumagai, Mater. Chem. Phys., 2020, 254.
45 Nyholm L, Nystrom G, Mihranyan A, Stromme M, Adv. Mater., 2011, 23(33), 3751-3769.   DOI