• 제목/요약/키워드: spatially -variable

검색결과 82건 처리시간 0.022초

공간적 변이성을 고려한 지진파 생성 (Spatially variable ground motion simulation)

  • 박두희;유세프 하샤시;이승찬;이현우;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.625-633
    • /
    • 2006
  • Spatial variability of ground motions has significant influence on dynamic response of longitudinal structures such as bridges and tunnels. The coherency function, which quantifies the degree of positive or negative correlation between two ground motions, is often used to describe the spatially variable ground motions. This paper compares two available procedures for developing spatially variable ground time histories from a given coherency function. Hao's method shows serious limitation, resulting in unrealistic decrease in coherency with increase in distance Abrahamason's method, on the other hand, preserves important characteristics of the reference ground motion. Therefore, the Abrahamason's method is recommended to be used in developing spatially varying ground motions.

  • PDF

공간적으로 변이하는 지진파에 의한 터널의 변형 비교 (Comparison of Tunnel's Deformation by Spatially Variable Ground Motion)

  • 곽동엽;안재광;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.265-268
    • /
    • 2008
  • The safety of a tunnel under seismic motion is most often evaluated by ovalling deformation of tunnel. This paper research about tunnel's longitudinal deformation. Because of spatial variation of seismic ground motion, the longitudinal structures like tunnel are likely to experience relative displacements along longitudinal direction. The spatially variable ground motion can be estimated by coherency function obtained empirically, and can be considered from different arrival times of ground motion. As a result of estimating tunnel's relative displacements at maximum curvature of tunnel, the displacements and curvatures estimated by coherency function affect the tunnel's safety more than different arrival times. However, if tunnel's displacements by coherency function superpose on displacements by different arrival times, the relative displacements and curvatures of tunnel will be more severe. Therefore, to estimate accurately tunnel's deformation in longitudinal direction has to consider both coherency and wave passage effects.

  • PDF

공간적으로 변이하는 지진파에 대한 터널의 응답 예측 (Prediction of Tunnel Response by Spatially Variable Ground Motion)

  • 김인태;한정우;윤세웅;박두희
    • 한국지반환경공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.53-61
    • /
    • 2008
  • 지진파는 진원지로부터 지표면으로 전파되는 과정에서 전파경로와 부지증폭정도의 차이, 그리고 비균질한 지반에서의 지진파 산란 등으로 인하여 공간적으로 변이하게 된다. 공간적으로 변이하는 지진파는 교량과 터널과 같이 종단방향 길이가 긴 구조물에 큰 영향을 미칠 수 있다. 지진파의 공간적 변이성이 교량에 미치는 영향에 대해서는 잘 알려져 있지만 터널에 미치는 영향에 대해서는 체계적인 연구가 수행된 바 없다. 본 연구에서는 공간적으로 변이하는 지진파에 대한 터널의 응답을 예측하기 위한 새로운 기법을 개발하였다. 개발된 기법의 핵심은 이격거리별 계산된 공간적으로 변이하는 지진파의 시간이력으로부터 생성되는 종단방향 변위 주상도이다. 종단방향 변위 주상도는 일련의 3차원 유사정적 유한요소해석을 수행하는데 사용되었다. 해석결과, 공간적으로 변이하는 지진파는 터널에 종단방향 휨을 유발하며 터널 라이닝에 큰 축력이 발생할 수 있는 것으로 나타났다. 이는 특히 지반의 특성이 변이하는 경계면에서 영향이 큰 것으로 나타났다.

  • PDF

Recent Innovation and Issued in Tractor and Field Crop Machinery in North America

  • Schueller, John K.;Stout, Bill A.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.393-403
    • /
    • 1996
  • The tractors and field crop machinery used in North American are produced by a mature industry. Recent technological innovations in include machinery for spatially -variable crop production , electronics for machine control and tractor-implement communications, low-emission and alternative fuel engines , flexible power transmission, and larger and more sophisticated equipment . Trends and issues are discussed.

  • PDF

Reliability and risk assessment for rainfall-induced slope failure in spatially variable soils

  • Zhao, Liuyuan;Huang, Yu;Xiong, Min;Ye, Guanbao
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.207-217
    • /
    • 2020
  • Slope reliability analysis and risk assessment for spatially variable soils under rainfall infiltration are important subjects but they have not been well addressed. This lack of study may in part be due to the multiple and diverse evaluation indexes and the low computational efficiency of Monte-Carlo simulations. To remedy this, this paper proposes a highly efficient computational method for investigating random field problems for slopes. First, the probability density evolution method (PDEM) is introduced. This method has high computational efficiency and does not need the tens of thousands of numerical simulation samples required by other methods. Second, the influence of rainfall on slope reliability is investigated, where the reliability is calculated from based on the safety factor curves during the rainfall. Finally, the uncertainty of the sliding mass for the slope random field problem is analyzed. Slope failure consequences are considered to be directly correlated with the sliding mass. Calculations showed that the mass that slides is smaller than the potential sliding mass (shallow surface sliding in rainfall). Sliding mass-based risk assessment is both needed and feasible for engineered slope design. The efficient PDEM is recommended for problems requiring lengthy calculations such as random field problems coupled with rainfall infiltration.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.

NONHOMOGENEOUS DIRICHLET PROBLEM FOR ANISOTROPIC DEGENERATE PARABOLIC-HYPERBOLIC EQUATIONS WITH SPATIALLY DEPENDENT SECOND ORDER OPERATOR

  • Wang, Qin
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1597-1612
    • /
    • 2016
  • There are fruitful results on degenerate parabolic-hyperbolic equations recently following the idea of $Kru{\check{z}}kov^{\prime}s$ doubling variables device. This paper is devoted to the well-posedness of nonhomogeneous boundary problem for degenerate parabolic-hyperbolic equations with spatially dependent second order operator, which has not caused much attention. The novelty is that we use the boundary flux triple instead of boundary layer to treat this problem.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.