Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.3.207

Reliability and risk assessment for rainfall-induced slope failure in spatially variable soils  

Zhao, Liuyuan (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University)
Huang, Yu (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University)
Xiong, Min (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University)
Ye, Guanbao (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University)
Publication Information
Geomechanics and Engineering / v.22, no.3, 2020 , pp. 207-217 More about this Journal
Abstract
Slope reliability analysis and risk assessment for spatially variable soils under rainfall infiltration are important subjects but they have not been well addressed. This lack of study may in part be due to the multiple and diverse evaluation indexes and the low computational efficiency of Monte-Carlo simulations. To remedy this, this paper proposes a highly efficient computational method for investigating random field problems for slopes. First, the probability density evolution method (PDEM) is introduced. This method has high computational efficiency and does not need the tens of thousands of numerical simulation samples required by other methods. Second, the influence of rainfall on slope reliability is investigated, where the reliability is calculated from based on the safety factor curves during the rainfall. Finally, the uncertainty of the sliding mass for the slope random field problem is analyzed. Slope failure consequences are considered to be directly correlated with the sliding mass. Calculations showed that the mass that slides is smaller than the potential sliding mass (shallow surface sliding in rainfall). Sliding mass-based risk assessment is both needed and feasible for engineered slope design. The efficient PDEM is recommended for problems requiring lengthy calculations such as random field problems coupled with rainfall infiltration.
Keywords
slope risk assessment; rainfall-induced slope failure; random fields; spatially variable soil; probability density evolution method;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Li, D.Q., Xiao, T., Cao, Z.J., Zhou, C.B. and Zhang, L.M. (2016a), "Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation", Landslides, 13, 293-303. https://doi.org/10.1007/s10346-015-0569-2.   DOI
2 Li, D.Q., Yang, Z.Y., Cao, Z.J., Au, S.K. and Phoon, K.K. (2017), "System reliability analysis of slope stability using generalized subset simulation", Appl. Math. Model., 46, 650-664. https://doi.org/10.1016/j.apm.2017.01.047.   DOI
3 Li, J. and Chen, J. (2008), "The principle of preservation of probability and the generalized density evolution equation", Struct. Saf., 30, 65-77. https://doi.org/10.1016/j.strusafe.2006.08.001.   DOI
4 Li, J. and Chen, J. (2009), Stochastic Dynamics of Structures, John Wiley & Sons.
5 Li, L. and Chu, X. (2016), "Risk assessment of slope failure by representative slip surfaces and response surface function", KSCE J. Civ. Eng., 20(5), 1783-1792. https://doi.org/10.1007/s12205-015-2243-6.   DOI
6 Lin, Q. and Wang, Y. (2018), "Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016", Landslides, 15(12), 2357-2372. https://doi.org/10.1007/s10346-018-1037-6   DOI
7 Liu, L.L., Cheng, Y.M., Wang, X.M., Zhang, S.H. and Wu, Z.H. (2017), "System reliability analysis and risk assessment of a layered slope in spatially variable soils considering stratigraphic boundary uncertainty", Comput. Geotech., 89, 213-225. https://doi.org/10.1016/j.compgeo.2017.05.014.   DOI
8 Low, B., Lacasse, S. and Nadim, F. (2007), "Slope reliability analysis accounting for spatial variation", Georisk, 1(4), 177-189. https://doi.org/10.1080/17499510701772089.   DOI
9 Mafi, R., Javankhoshdel, S., Cami, B., Jamshidi Chenari, R. and Gandomi, A.H. (2020), "Surface altering optimisation in slope stability analysis with non-circular failure for random limit equilibrium method", Georisk Assess. Manage. Risk Eng. Syst. Geohazards, 1-27. https://doi.org/10.1080/17499518.2020.1771739.
10 Ozbay, A. and Cabalar, A. (2015), "FEM and LEM stability analyses of the fatal landslides at ollolar open-cast lignite mine in elbistan, turkey", Landslides, 12, 155-163. https://doi.org/10.1007/s10346-014-0537-2.   DOI
11 Qi, X.H. and Li, D.Q. (2018), "Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes", Eng. Geol., 239, 41-49. https://doi.org/10.1016/j.enggeo.2018.03.007.   DOI
12 Rahardjo, H., Ong, T., Rezaur, R. and Leong, E.C. (2007), "Factors controlling instability of homogeneous soil slopes under rainfall", J. Geotech. Geoenviron. Eng., 133(12), 1532-1543. https://doi.org/10.1061/(asce)1090-0241(2007)133:12(1532).   DOI
13 Van Tien, P., Sassa, K., Takara, K., Fukuoka, H., Dang, K., Shibasaki, T., Ha, N.D., Setiawan, H. and Loi, D.H. (2018), "Formation process of two massive dams following rainfall-induced deep-seated rapid landslide failures in the kii peninsula of Japan", Landslides, 15, 1761-1778. https://doi.org/10.1007/s10346-018-0988-y.   DOI
14 Segoni, S., Piciullo, L. and Gariano, S.L. (2018), "A review of the recent literature on rainfall thresholds for landslide occurrence", Landslides, 15(8), 1483-1501. https://doi.org/10.1007/s10346-018-0966-4.   DOI
15 Staron, L. and Lajeunesse, E. (2009), "Understanding how volume affects the mobility of dry debris flows", Geophys. Res. Lett., 36(12). https://doi.org/10.1029/2009GL038229.
16 Van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Amer. J., 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.   DOI
17 Vanapalli, S., Fredlund, D., Pufahl, D. and Clifton, A. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.   DOI
18 Vanmarcke, E. (1983), Random Fields: Analysis and Synthesis, MIT Press.
19 Wang, X., Wang, H. and Liang, R.Y. (2017), "A method for slope stability analysis considering subsurface stratigraphic uncertainty", Landslides, 15(5), 925-936. https://doi.org/10.1007/s10346-017-0925-5.   DOI
20 Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai, J. and Gao, M. (2016), "Optimized volume models of earthquake-triggered landslides", Sci. Reports, 6(1), 29797. https://doi.org/10.1038/srep29797.
21 Yang, K.H., Huynh, V.D.A., Nguyen, T.S. and Portelinha, F.H.M. (2018), "Numerical evaluation of reinforced slopes with various backfill-reinforcement-drainage systems subject to rainfall infiltration", Comput. Geotech., 96, 25-39. https://doi.org/10.1016/j.compgeo.2017.10.012.   DOI
22 Yin, Y., Li, B., Wang, W., Zhan, L., Xue, Q., Gao, Y., Zhang, N., Chen, H., Liu, T. and Li, A. (2016), "Mechanism of the december 2015 catastrophic landslide at the shenzhen landfill and controlling geotechnical risks of urbanization", Engineering, 2(2), 230-249. https://doi.org/10.1016/j.eng.2016.02.005.   DOI
23 Yu, M., Huang, Y., Xu, Q., Guo, P. and Dai, Z. (2016), "Application of virtual earth in 3d terrain modeling to visual analysis of large-scale geological disasters in mountainous areas", Environ. Earth Sci., 75(7), 563. https://doi.org/10.1007/s12665-015-5161-5.   DOI
24 Zhang, J. and Huang, H. (2016), "Risk assessment of slope failure considering multiple slip surfaces", Comput. Geotech., 74, 188-195. https://doi.org/10.1016/j.compgeo.2016.01.011.   DOI
25 Zhang, J., Huang, H.W., Zhang, L.M., Zhu, H.H. and Shi, B. (2014), "Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model", Eng. Geol., 168, 129-140. https://doi.org/10.1016/j.enggeo.2013.11.005   DOI
26 Zhang, J., Zhang, L. and Tang, W.H. (2010), "Slope reliability analysis considering site-specific performance information", J. Geotech. Geoenviron. Eng. 137(3), 227-238. https://doi.org/10.1061/(asce)gt.1943-5606.0000422.   DOI
27 Zhang, L., Zhang, L. and Tang, W. (2005), "Rainfall-induced slope failure considering variability of soil properties", Geotechnique, 55(2), 183-188. https://doi.org/10.1680/geot.55.2.183.59525.   DOI
28 Zhu, J.Q. and Yang, X.L. (2018), "Probabilistic stability analysis of rock slopes with cracks", Geomech. Eng., 16(6), 655-667. https://doi.org/10.12989/gae.2018.16.6.655.   DOI
29 Chen, J.B. and Li, J. (2009), "A note on the principle of preservation of probability and probability density evolution equation", Prob. Eng. Mech., 24, 51-59. https://doi.org/10.1016/j.probengmech.2008.01.004.   DOI
30 Cala, M. and Flisiak, J. (2001), "Slope stability analysis with FLAC and limit equilibrium methods", Proceedings of the 2nd International FLAC Symposium, Melbourne, Australia, February.
31 Elkateb, T., Chalaturnyk, R. and Robertson, P.K. (2003), "An overview of soil heterogeneity: Quantification and implications on geotechnical field problems", Can. Geotech. J., 40, 1-15. https://doi.org/10.1139/t02-090.   DOI
32 Chenari, R.J. and Fatahi, B. (2019), "Physical and numerical modelling of the inherent variability of shear strength in soil mechanics", Geomech. Eng., 17(1), 31-45. https://doi.org/10.12989/gae.2019.17.1.031.   DOI
33 Cho, S.E. (2009), "Probabilistic assessment of slope stability that considers the spatial variability of soil properties", J. Geotech. Geoenviron. Eng., 136(7), 975-984. https://doi.org/10.1061/(asce)gt.1943-5606.0000309.   DOI
34 Cho, S.E. (2014), "Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability", Eng. Geol., 171, 11-20. https://doi.org/10.1016/j.enggeo.2013.12.015.   DOI
35 Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. and Paudyal, P. (2008), "Predictive modelling of rainfall-induced landslide hazard in the lesser himalaya of nepal based on weights-of-evidence", Geomorphology, 102, 496-510. https://doi.org/10.1016/j.geomorph.2008.05.041.   DOI
36 Dai, F. and Lee, C. (2001), "Frequency-volume relation and prediction of rainfall-induced landslides", Eng. Geol., 59, 253-266. https://doi.org/10.1016/s0013-7952(00)00077-6.   DOI
37 Fenton, G.A. and Griffiths, D.V. (2008), Risk Assessment in Geotechnical Engineering, John Wiley & Sons.
38 Galanti, Y., Barsanti, M., Cevasco, A., Avanzi, G.D.A. and Giannecchini, R. (2018), "Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds", Landslides, 15, 937-952. https://doi.org/10.1007/s10346-017-0919-3.   DOI
39 Griffiths, D. and Fenton, G.A. (2004), "Probabilistic slope stability analysis by finite elements", J. Geotech. Geoenviron. Eng., 130, 507-518. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507).   DOI
40 GEO-SLOPE International Ltd. (2018), Factors Controlling Rainfall-Induced Instability, Example illustrates the importance of some factors that influence the stability of a slope during rainfall. https://www.geoslope.com.
41 Hu, H. and Huang, Y. (2019), "A dynamic reliability approach to seismic vulnerability analysis of earth dams", Geomech. Eng., 18(6), 661-668. https://doi.org/10.12989/gae.2019.18.6.661.   DOI
42 Griffiths, D. and Lane, P. (1999), "Slope stability analysis by finite elements", Geotechnique, 49, 387-403. https://doi.org/10.1680/geot.1999.49.3.387.   DOI
43 Griffiths, D., Huang, J. and Fenton, G.A. (2009), "Influence of spatial variability on slope reliability using 2-d random fields", J. Geotech. Geoenviron. Eng., 135(10), 1367-1378. https://doi.org/10.1061/(asce)gt.1943-5606.0000099.   DOI
44 Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2008), "The rainfall intensity-duration control of shallow landslides and debris flows: An update", Landslides, 5, 3-17. https://doi.org/10.1007/s10346-007-0112-1.   DOI
45 Huang, J., Griffiths, D. and Fenton, G.A. (2010), "System reliability of slopes by RFEM", Soils Found., 50(3), 343-353. https://doi.org/10.3208/sandf.50.343.   DOI
46 Huang, J., Ju, N., Liao, Y. and Liu, D. (2015), "Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method", Nat. Hazards Earth Syst. Sci., 15(12), 2715-2723. https://doi.org/10.5194/nhessd-3-3487-2015.   DOI
47 Izadi, A., Jamshidi Chenari, R., Brigid, C. and Javankhoshdel, S. (2020), "Pseudo and full stochastic slope stability analyses using random limit equilibrium method (LEM)", Proceedings of the GeoCongress, Minneapolis, Minnesota, U.S.A., February.
48 Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K. and Sloan, S. (2013), "Quantitative risk assessment of landslide by limit analysis and random fields", Comput. Geotech., 53, 60-67. https://doi.org/10.1016/j.compgeo.2013.04.009.   DOI
49 Huang, Y. and Xiong, M. (2017), "Dynamic reliability analysis of slopes based on the probability density evolution method", Soil Dyn. Earthq. Eng., 94, 1-6. https://doi.org/10.1016/j.soildyn.2016.11.011.   DOI
50 Huang, Y., Zhao, L., Xiong, M., Liu, C. and Lu, P. (2018), "Critical slip surface and landslide volume of a soil slope under random earthquake ground motions", Environ. Earth Sci., 77(23), 1-11. https://doi.org/10.1007/s12665-018-7974-5.   DOI
51 Jamshidi Chenari, R. and Alaie, R. (2015), "Effects of anisotropy in correlation structure on the stability of an undrained clay slope", Georisk Assess. Manage. Risk Eng. Syst. Geohazards, 9, 109-123. https://doi.org/10.1080/17499518.2015.1037844.   DOI
52 Jamshidi Chenari, R. and Behfar, B. (2017), "Stochastic analysis of seepage through natural alluvial deposits considering mechanical anisotropy", Civ. Eng. Infrastruct. J., 50(2), 233-253. https://doi.org/10.7508/ceij.2017.02.003
53 Javankhoshdel, S., Cami, B., Mafi, R., Yacoub, T. and Bathurst, R.J. (2018), "Optimization techniques in non-circular probabilistic slope stability analysis considering spatial variability", Proceedings of the GeoEdmonton 2018, Edmonton, Alberta, Canada, September.
54 Jiang, S.H. and Huang, J.S. (2016), "Efficient slope reliability analysis at low-probability levels in spatially variable soils", Comput. Geotech., 75, 18-27. https://doi.org/10.1016/j.compgeo.2016.01.016.   DOI
55 Johnson, B.C., Campbell, C.S. and Melosh, H.J. (2016), "The reduction of friction in long runout landslides as an emergent phenomenon", J. Geophys. Res. Earth Surf., 121, 881-889. https://doi.org/10.1002/2015jf003751.
56 Jiang, S.H., Huang, J. and Zhou, C.B. (2017a), "Efficient system reliability analysis of rock slopes based on subset simulation", Comput. Geotech., 82, 31-42. https://doi.org/10.1016/j.compgeo.2016.09.009.   DOI
57 Jiang, S.H., Huang, J., Yao, C. and Yang, J. (2017b), "Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method", Appl. Math. Model., 47, 710-725. https://doi.org/10.1016/j.apm.2017.03.048.   DOI
58 Jiang, S.H., Li, D.Q., Cao, Z.J., Zhou, C.B. and Phoon, K.K. (2014), "Efficient system reliability analysis of slope stability in spatially variable soils using monte carlo simulation", J. Geotech. Geoenviron. Eng., 141(2), 04014096. https://doi.org/10.1061/(asce)gt.1943-5606.0001227.   DOI
59 Juang, C.H., Zhang, J. and Gong, W. (2015), "Reliability-based assessment of stability of slopes", IOP Conf. Ser. Earth Environ. Sci., 26(1), 012006. https://doi.org/10.1088/1755-1315/26/1/012006.   DOI
60 Klose, M., Damm, B. and Terhorst, B. (2015), "Landslide cost modeling for transportation infrastructures: A methodological approach", Landslides, 12(2), 321-334. https://doi.org/10.1007/s10346-014-0481-1.   DOI
61 Lee, L.M., Gofar, N. and Rahardjo, H. (2009), "A simple model for preliminary evaluation of rainfall-induced slope instability", Eng. Geol., 108(3-4), 272-285. https://doi.org/10.1016/j.enggeo.2009.06.011.   DOI
62 Li, D.Q., Xiao, T., Cao, Z.J., Phoon, K.K. and Zhou, C.B. (2016b), "Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis", Appl. Math. Model., 40(9-10), 5216-5229. https://doi.org/10.1016/j.apm.2015.11.044.   DOI