• Title/Summary/Keyword: spatial geometry

Search Result 312, Processing Time 0.029 seconds

Fractal Approaches to Ecological and Limnological Phenomena (생태학적 ${\cdot}$ 육수학적 현상들에 대한 프랙탈의 적용)

  • Chang, Hyun-Jeong;Kang, Sin-Kyu;Lee, Do-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.69-79
    • /
    • 2000
  • Fractal geometry has become one of prospective research approaches as the complex structure of natural entities is not easily characterized by traditional Euclidean geometry. With the fractal geometry, we can better decipher the complex structure and identify natural and anthropogenic agents of landscape patterns occurring at different spatial scales. The usefulness of fractal, however, has not been fully appreciated among Korean academic societies, especially in ecological and limnological fields. We attempt to address three points in this study. First, we introduce the concept and dimension of fractal and review relevant research approaches, especially with respect to ecological and limnological phenomena. Second, we explore possible applications of fractal to some aspects of geography and land use characteristics in South Korea. For the analyses of fractal dimensions, we used data published in other studies previously and collected for this study. Data were analyzed by a perimeter/area method of fractal dimension for the spatial distribution of global solar radiation and leaf area index, and the movement of wild boars in forested landscapes of mid-eastern Korea. The same approach was also applied to the water channel of a hypothetical river and the shape of reservoirs in Yongin, Kyunggi Province. Finally, we discuss the results and key issues to consider when a fractal approach is employed in ecology and limnology.

  • PDF

Singularity-Circumvented Computation of Green's Functions for 2D Periodic Structures in Homogeneous Medium

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • This paper suggests a novel method to efficiently calculate the spatial-domain Green's functions of 2D electromagnetic problems Briefly speaking, this method combines spectral and spatial domain calculation schemes and prevents the Green's functions from poor convergence due to the singularities that complicate the process of the Method of Moment(MoM) applications For the validation of this proposed method, fields will be evaluated along the spatial distance including zero distance for 2D free-space and periodic homogeneous geometry The numerical results show the validity of the prosed method and correspondng physics.

Proposal of Singularity-Circumvented Green's Functions for 2D Periodic Structures in Homogeneous Medium (특이점이 제거된 2 차원 단일매질 주기구조에 대한 그린함수의 제안)

  • Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.133-134
    • /
    • 2006
  • In this paper, a novel method is presented for efficient calculation of the spatial-domain Green's functions of 2D electromagnetic problems. This method combines spectral and spatial domain calculation schemes and prevents the Green's functions from diverging at the singularities that complicate the process of the Method of Moment(MoM) application. For the validation of this proposed method, fields will be evaluated along the spatial distance including zero distance for 2D free-space and periodic homogeneous geometry. The numerical results show the validity of the prosed method and correspondng physics.

  • PDF

Integrating IndoorGML and Indoor POI Data for Navigation Applications in Indoor Space

  • Claridades, Alexis Richard;Park, Inhye;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.359-366
    • /
    • 2019
  • Indoor spatial data has great importance as the demand for representing the complex urban environment in the context of providing LBS (Location-based Services) is increasing. IndoorGML (Indoor Geographic Markup Language) has been established as the data standard for spatial data in providing indoor navigation, but its definitions and relationships must be expanded to increase its applications and to successfully delivering information to users. In this study, we propose an approach to integrate IndoorGML with Indoor POI (Points of Interest) data by extending the IndoorGML notion of space and topological relationships. We consider two cases of representing Indoor POI, by 3D geometry and by point primitive representation. Using the concepts of the NRS (node-relation structure) and multi-layered space representation of IndoorGML, we define layers to separate features that represent the spaces and the Indoor POI into separate, but related layers. The proposed methodology was implemented with real datasets to evaluate its effectiveness for performing indoor spatial analysis.

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

A Study on the Geometrical Expression Shown in the Architecture of Guarino Guarini - Focusing on the Analysis of Spatial Form in Guarino Guarini's Church of San Lorenzo- (구아리노 구아리니 건축에 나타난 기하학적 표현에 관한 연구 - 그의 산 로렌쪼 성당의 공간형태 분석을 중심으로 -)

  • Han Myoung-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.95-102
    • /
    • 2005
  • Guarini's architectural contribution has simply focused on the dome structure that has been known to us; however, his geometric and spatial construction has been overlooked so far Through this study, it has been demonstrated that the dome structure was simply part of geometrical forms that Guarini wanted to express ultimately and it functioned as a geometrical element such as the network combined with the entire spatial structure. The purpose of this study is to reevaluate Guarini's architectural thought by means of investigating the ultimate principles of spatial composition appeared in the late Baroque architecture through the analysis of the principles of spatial composition and organized formal Idioms by Guarini's geometrical concepts. Besides, it has been assumed that such geometrical concepts by Guarini's mathematical proportion and his reiteration and change of diagrams could be clearly distinguished from the Classical geometry in the Renaissance and Guarini. suggested a way to create a new space through more active and amusing application and transformation. In this aspect, Guarini's principles of geometric composition will be one of the role models that need to be seriously reconsidered in chaotic reality of modern architecture.

Design of Spatial Relationship for 3D Geometry Model (3차원 기하모델에 대한 공간 관계 연산 설계)

  • Yi Dong-Heon;Hong Sung-Eon;Park Soo-Hong
    • Spatial Information Research
    • /
    • v.13 no.2 s.33
    • /
    • pp.119-128
    • /
    • 2005
  • Most spatial data handled in GIS is two-dimensional. These two-dimensional data is established by selecting 2D aspects form 3D, or by projecting 3D onto 2D space. During this conversion, without user's intention, data are abstracted and omitted. This unwanted data loss causes disadvantages such as restrictingof the range of data application and describing inaccurate real world. Recently, three dimensional data is getting wide interests and demands. One of the examplesis Database Management System which can store and manage three dimensional spatial data. However, this DBMS does not support spatial query which is the essence of the database management system. So, various studies are needed in this field. This research designs spatial relationship that is defined in space database standard using the three-dimension space model. The spatial data model, which is used in this research, is the one defined in OGC for GMS3, and designing tool is DE-9IM based on Point-Set Topology blow as the best method for topological operation.

  • PDF

Research on the Teaching Building-blocks in Elementary Geometry Class using 3D Visualization SW (3D Visualization SW를 활용한 초등학교 쌓기나무 도형교육에 관한 연구)

  • Bae, Hun Joong;Kim, Jong-seong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.71-80
    • /
    • 2017
  • The standards for achievement levels for building blocks in elementary geometry class is to enhance spatial cognitive ability through practices describing shape patterns of building blocks observed from different directions. However, most of building block in the textbook is described from only one perspective. Even worse, some examples in the textbook are almost impossible to observe in the real world. Contrary to this, simulated views by Wings3D has shown that each box may look quite differently from different angles let alone the size of each box. Using Wings3D, it is also very easy to build different types of building blocks with various levels of difficulty in the virtual space. Based on these results, in this study, 3D visualization SW is suggested as a potential pedagogical tool for the elementary geometry class to help kids perceive objects in space more precisely. We have shown that 3D visualization SW such as Wings3D could be a powerful, compact 3D SW for most of subjects which are covered in elementary geometry education. Wings3D has another advantage of economic open source SW fully compatible with school PCs.

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

A Study on Spatial Characteristics in the Paintings of Johannes Vermeer (요하네스 베르메르 회화에 나타난 공간적 특성에 관한 연구)

  • Kim, Jong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.2
    • /
    • pp.22-29
    • /
    • 2008
  • Johannes Vermeer is one of the masters in the 17th century Dutch Genre Painting. Genre Painting represented the mundane everyday life and humble domestic spaces of the time. It was so unique in the history of western art. Most common subjects of the medieval art had been myths, historical heroes, and the christianity up to that time. However, Dutch Genre Painting that was originated from the 16th century Flandre art has fundamentally changed perception of art. Genre Painting was related to the prosperous development of civil society and early capitalism in the Netherlands of the time. In the paintings of Vermeer, there are unique spatial characteristics. This study aims to 'spatially' analyze the representation of everyday space perceived by the painter himself. Three analytical elements were chosen: light, space, and geometry. These elements have crucial roles to construct a space together within which Vermeer tried to express his discoveries as well as perception of the world. Four paintings were selected to be further analyzed in detail: $\ulcorner$A Maid Asleep$\lrcorner$ (1656-57), $\ulcorner$The Little Street$\lrcorner$ (1658-60), $\ulcorner$The Music Lesson$\lrcorner$ (1662-1665), and $\ulcorner$Young Woman with a Water Pitcher$\lrcorner$ (1662). It has been found that there are distinct spatial aspects in his paintings: Structure of Frontal Layers, Diffusion of Light, and Subtle Geometrical Tension. It is hoped that this sort of interdisciplinary research could enrich the related studies in the field of architecture & interior design, and could help to rediscover the everyday world that we live in here and now.