• Title/Summary/Keyword: spatial error model

Search Result 436, Processing Time 0.02 seconds

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone (조간대 갯벌에서 무인항공기 활용 가능성에 관한 연구 - 수치표고모델을 중심으로 -)

  • Kim, Bum-Jun;Lee, Yoon-Kyung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • In this study, we generated orthoimages and Digital Elevation Model (DEM) from Unmanned Aerial Vehicle (UAV) to confirm the accuracy of possibility of geospatial information system generation, then compared the DEM with the topographic height values measured from Real Time Kinematic-GPS (RTK-GPS). The DEMs were generated from aerial triangulation method using fixed-wing UAV and rotary-wing UAV, and DEM based on the waterline method also generated. For the accurate generation of mosaic images and DEM, the distorted images occurred by interior and exterior orientation were corrected using camera calibration. In addition, we set up the 30 Ground Control Points (GPCs) in order to correct of the UAVs position error. Therefore, the mosaic images and DEM were obtained with geometric error less than 30 cm. The height of generated DEMs by UAVs were compared with the levelled elevation by RTK-GPS. The value of R-square is closely 1. From this study, we could confirm that accurate DEM of the tidal flat can be generated using UAVs and these detailed spatial information about tidal flat will be widely used for tidal flat management.

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer (정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로)

  • Shin, Yeji;Han, Daehyeon;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1405-1423
    • /
    • 2021
  • Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps (정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.363-369
    • /
    • 2021
  • High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.

Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis (시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측)

  • Woo, Joung Woon;Kim, Yeon Joong;Yoon, Jong Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.128-134
    • /
    • 2022
  • Nakdong river estuary is being operated with the goal of expanding the period of seawater inflow from this year to 2022 every month and creating a brackish water area within 15 km of the upstream of the river bank. In this study, the deep learning algorithm Long Short-Term Memory (LSTM) was applied to predict the salinity of the Nakdong Bridge (about 5 km upstream of the river bank) for the purpose of rapid decision making for the target brackish water zone and prevention of salt water damage. Input data were constructed to reflect the temporal and spatial characteristics of the Nakdong River estuary, such as the amount of discharge from Changnyeong and Hamanbo, and an optimal model was constructed in consideration of the hydraulic characteristics of the Nakdong River Estuary by changing the degree according to the sequence length. For prediction accuracy, statistical analysis was performed using the coefficient of determination (R-squred) and RMSE (root mean square error). When the sequence length was 12, the R-squred 0.997 and RMSE 0.122 were the highest, and the prior prediction time showed a high degree of R-squred 0.93 or more until the 12-hour interval.

Regional Disparity of Ambulatory Health Care Utilization (시공간 분석을 이용한 외래 의료이용의 지역적 차이 분석)

  • Shin, Ho-Sung;Lee, Sue-Hyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.138-150
    • /
    • 2012
  • The purpose of this study was to examine the regional disparity of ambulatory health care utilization considering spatio-temporal variation in South Korea during 1996-2008(precisely, in 1996, 1999, 2002, 2005, and 2008) using bayesian hierarchial spatio-temporal model. The spatial pattern uses an intrinsic gaussian conditional autoregressive (CAR) error component. Ornstein-Uhlenbeck method was applied to detect the temporal patterns. The results showed that substantial temporal-geographical variation depending on diseases exists in Korea. On the Contrary to the pattern of total outpatient utilizations, for example, the areas that chronic diseases distributed relatively high were most in rural where the proportion of elderly population was higher than in the urban. Chungcheongnam-do, Junlabuk-do, and Kyeongsangbuk-do had higher risks in hypertension, whereas arthritis was higher risk in the Kyeonggi-do, Chungcheongbuk-do, Junlanam-do, and Junlabuk-do. The results of this study suggested that the effective health intervention programmes needed to alleviate the regional variation of health care utilization. These outcomes also provided the foundation for further investigation of risk factors and interventions in these high-risk areas.

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Providing the combined models for groundwater changes using common indicators in GIS (GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공)

  • Samaneh, Hamta;Seo, You Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.245-255
    • /
    • 2022
  • Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.

Major Factors Influencing Landslide Occurrence along a Forest Road Determined Using Structural Equation Model Analysis and Logistic Regression Analysis (구조방정식과 로지스틱 회귀분석을 이용한 임도비탈면 산사태의 주요 영향인자 선정)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.585-596
    • /
    • 2022
  • This study determined major factors influencing landslide occurrence along a forest road near Sangsan village, Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea. Within a 2 km radius of the study area, landslides occur intensively during periods of heavy rainfall (August 2020). This makes study of the area advantageous, as it allows examination of the influence of only geological and tomographic factors while excluding the effects of rainfall and vegetation. Data for 82 locations (37 experiencing landslides and 45 not) were obtained from geological surveys, laboratory tests, and geo-spatial analysis. After some data preprocessing (e.g., error filtering, minimum-maximum normalization, and multicollinearity), structural equation model (SEM) and logistic regression (LR) analyses were conducted. These showed the regolith thickness, porosity, and saturated unit weight to be the factors most influential of landslide risk in the study area. The sums of the influence magnitudes of these factors are 71% in SEM and 83% in LR.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.