Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.5.3.6

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer  

Shin, Yeji (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Han, Daehyeon (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Im, Jungho (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.37, no.5_3, 2021 , pp. 1405-1423 More about this Journal
Abstract
Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.
Keywords
Rainfall intensity; geostationary satellite; weather radar; Korean peninsula; machine learning; random forest;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.L. Hsu, 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons, Reviews of Geophysics, 56(1): 79-107.   DOI
2 Vicente, G.A., R.A. Scofield, and W.P. Menzel, 1998. The operational GOES infrared rainfall estimation technique, Bulletin of the American Meteorological Society, 79(9): 1883-1898.   DOI
3 Yoon, S., 2013. statistical of extreme rainfall events and applications of radar rainfall estimates for reducing flood risk in Gyeongnam area, Kyungsang University, Jinju, KR (in Korean with English abstract).
4 Hou, A.Y., R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014. The global precipitation measurement mission, Bulletin of the American Meteorological Society, 95(5): 701-722.   DOI
5 Tao, Y., K. Hsu, A. Ihler, X. Gao, and S. Sorooshian, 2018. A two-stage deep neural network framework for precipitation estimation from bispectral satellite information, Journal of Hydrometeorology, 19(2): 393-408.   DOI
6 Chung, S.-R., M.-H. Ahn, K.-S. Han, K.-T. Lee, and D.-B. Shin, 2020. Meteorological Products of Geo-KOMPSAT 2A (GK2A) Satellite, Asia-Pacific Journal of Atmospheric Sciences, 56: 185.   DOI
7 Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system, Journal of Applied Meteorology, 43(12): 1834-1853.   DOI
8 Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32.   DOI
9 Miao, C., H. Ashouri, K.-L. Hsu, S. Sorooshian, and Q. Duan, 2015. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China, Journal of Hydrometeorology, 16(3): 1387-1396.   DOI
10 Huffman, G.J., R.F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, and U. Schneider, 1997. The global precipitation climatology project (GPCP) combined precipitation dataset, Bulletin of the American Meteorological Society, 78(1): 5-20.   DOI
11 Jang, E., Y.J. Kim, J. Im, and Y.-G. Park, 2021. Improvement of SMAP sea surface salinity in river-dominated oceans using machine learning approaches, GIScience and Remote Sensing, 58(1): 138-160.   DOI
12 Kidd, C. and G. Huffman, 2011. Global precipitation measurement, Meteorological Applications, 18(3): 334-353.   DOI
13 Sadeghi, M., A.A. Asanjan, M. Faridzad, P. Nguyen, K. Hsu, S. Sorooshian, and D. Braithwaite, 2019. PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks-convolutional neural networks, Journal of Hydrometeorology, 20(12): 2273-2289.   DOI
14 Han, D., J. Lee, J. Im, S. Sim, S. Lee, and H. Han, 2019. A novel framework of detecting convective initiation combining automated sampling, machine learning, and repeated model tuning from geostationary satellite data, Remote Sensing, 11(12): 1454.   DOI
15 Kim, M., J. Lee, and J. Im, 2018. Deep learning-based monitoring of overshooting cloud tops from geostationary satellite data, GIScience and Remote Sensing, 55(5): 763-792.   DOI
16 Marshall, J.S., 1948. The distribution of raindrops with size, Quarterly Journal of the Royal Meteorological Society, 76(327): 165-166.
17 Meisner, B.N., and P.A. Arkin, 1987. Spatial and annual variations in the diurnal cycle of large-scale tropical convective cloudiness and precipitation, Monthly Weather Review, 115(9): 2009-2032.   DOI
18 Prigent, C., 2010. Precipitation retrieval from space: An overview, Comptes Rendus Geoscience, 342(4-5): 380-389.   DOI
19 Shin, J.-Y., Y. Ro, J.-W. Cha, K.-R. Kim, and J.-C. Ha, 2019. Assessing the Applicability of Random Forest, Stochastic Gradient Boosted Model, and Extreme Learning Machine Methods to the Quantitative Precipitation Estimation of the Radar Data: A Case Study to Gwangdeoksan Radar, South Korea, in 2018, Advances in Meteorology, 2019.
20 Sakolnakhon, K. and S. Nuntakamolwaree, 2016. The estimation rainfall using infrared (IR) band of Himawari-8 satellite over Thailand, Engineering: Naresuan University, 39: 236-248.
21 Tsay, J.-D., K. Kao, C.-C. Chao, and Y.-C. Chang, 2020. Deep learning for satellite rainfall retrieval using Himawari-8 multiple spectral channels, Preprints, 2020100648.
22 Marcos, C. and A. Rodriguez, 2013. Validation report for "convective rainfall rate"(CRR-PGE05 v4.0). NWC-CDOP2-GEO-AEMET-SCI-ATBD-Precipitation_v1.1, 15p. Available online at https://www.nwcsaf.org/documents/20182/30785/NWC-CDOP2-GEOAEMET-SCI-ATBD-Precipitation_v1.1.pdf/091e7abe-518d-4b55-a744-cccd12d9f2b9, Accessed on Oct. 19, 2021.
23 Sorooshian, S., K.-L. Hsu, X. Gao, H.V. Gupta, B. Imam, and D. Braithwaite, 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bulletin of the American Meteorological Society, 81(9): 2035-2046.   DOI
24 Mishra, K.V., A. Gharanjik, M.B. Shankar, and B. Ottersten, 2018. Deep learning framework for precipitation retrievals from communication satellites, Proc. of 10th European Conference on Radar in Meteorology and Hydrology, Wageningen, NL, Jul. 1-6, pp.1-9.
25 Saltikoff, E., K. Friedrich, J. Soderholm, K. Lengfeld, B. Nelson, A. Becker, R. Hollmann, B. Urban, M. Heistermann, and C. Tassone, 2019. An overview of using weather radar for climatological studies: Successes, challenges, and potential, Bulletin of the American Meteorological Society, 100(9): 1739-1752.   DOI
26 Song, H.-J. and B.-J. Sohn, 2015. Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study, Monthly Weather Review, 143(1): 363-382.   DOI
27 Wu, H., Q. Yang, J. Liu, and G. Wang, 2020. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China, Journal of Hydrology, 584: 124664.   DOI
28 Yoo, C., J. Im, S. Park, and D. Cho, 2017. Thermal characteristics of Daegu using land cover data and satellite-derived surface temperature downscaled based on machine learning, Korean Journal of Remote Sensing, 33(6-2): 1101-1118 (in Korean with English abstract).   DOI
29 Yu, P.-S., T.-C. Yang, S.-Y. Chen, C.-M. Kuo, and H.-W. Tseng, 2017. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting, Journal of Hydrology, 552: 92-104.   DOI
30 Ahn, S.-H., K.-J. Park, J.-Y. Kim, and B.-J. Kim, 2015. The characteristics of the frequency and damage for meteorological disasters in Korea, Journal of Korean Society of Hazard Mitigation, 15(2): 133-144 (in Korean with English abstract).   DOI
31 Ashouri, H., K.-L. Hsu, S. Sorooshian, D.K. Braithwaite, K.R. Knapp, L.D. Cecil, B.R. Nelson, and O.P. Prat, 2015. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies, Bulletin of the American Meteorological Society, 96(1): 69-83.   DOI
32 Griffith, C.G., W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout, and D.N. Sikdar, 1978. Rain estimation from geosynchronous satellite imagery-Visible and infrared studies, Monthly Weather Review, 106(8): 1153-1171.   DOI
33 Cho, D., C. Yoo, J. Im, Y. Lee, and J. Lee, 2020. Improvement of spatial interpolation accuracy of daily maximum air temperature in urban areas using a stacking ensemble technique, GIScience & Remote Sensing, 57(5): 633-649.   DOI
34 Choi, H., J.-J. Seo, J. Bae, S. Kim, and K.-M. Lee, 2018. Improvement of Non-linear Estimation Equation of Rainfall Intensity over the Korean Peninsula by using the Brightness Temperature of Satellite and Radar Reflectivity Data, Journal of the Korean Earth Science Society, 39(2): 131-138 (in Korean with English abstract).   DOI
35 Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006. Radar precipitation measurement in a mountainous region, Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 132(618): 1669-1692.   DOI
36 Joss, J., A. Waldvogel, and C. Collier, 1990. Precipitation measurement and hydrology, Radar in Meteorology, 1990: 577-606.
37 Hong, Y., D. Gochis, J.-T. Cheng, K.-l. Hsu, and S. Sorooshian, 2007. Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network, Journal of Hydrometeorology, 8(3): 469-482.   DOI
38 Hsu, K.-L., X. Gao, S. Sorooshian, and H.V. Gupta, 1997. Precipitation estimation from remotely sensed information using artificial neural networks, Journal of Applied Meteorology, 36(9): 1176-1190.   DOI