• 제목/요약/키워드: sparse channel

검색결과 57건 처리시간 0.023초

반향 필터 추정에서 성김 특성을 이용한 단일채널 음성반향제거 방법 (A Single-Channel Speech Dereverberation Method Using Sparse Prior Imposition in Reverberation Filter Estimation)

  • 지민선;박형민
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.227-232
    • /
    • 2013
  • Since a reverberation filter is generally much shorter than the corresponding dereverberation filter, a single-channel speech dereverberation method based on reverberation filter estimation has been developed to improve its performance. Unfortunately, a typical reverberation filter still requires too many coefficients to be accurately estimated using limited speech observations. In order to exploit sparseness of reverberation filter coefficients, in this paper, we present an algorithm to impose a sparse prior to the process of reverberation filter estimation. Simulation results demonstrate that the sparse prior imposition further improves performance of the speech dereverberation method based on reverberation filter estimation.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

희소성 음향 통신 채널 추정 견실화를 위한 백색화를 적용한 l1놈-RLS 알고리즘 (L1 norm-recursive least squares algorithm for the robust sparse acoustic communication channel estimation)

  • 임준석;편용국;김성일
    • 한국음향학회지
    • /
    • 제39권1호
    • /
    • pp.32-37
    • /
    • 2020
  • 본 논문은 l1놈-Recursive Least Squares(RLS)에 수치 계산상 견실화를 더한 새로운 알고리즘을 제안한다. Eksioglu와 Tanc는 희소성 음향 채널 추정을 위해서 l1놈-RLS 알고리즘을 구현하였다. 그러나 이 알고리즘의 근간인 RLS 계산법 역행렬 계산에서 수치 계산상의 불안정성을 지니고 있다. 본 논문에서는 이런 불안정성을 낮추는 새로운 알고리즘을 제안한다. 그리고 제안한 방법을 사용했을 때 수치적 불안정성에 대한 성능이 개선되었음을 보인다.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

음향 채널의 '성김' 특성을 이용한 반향환경에서의 화자 위치 탐지 (Speaker Localization in Reverberant Environments Using Sparse Priors on Acoustic Channels)

  • 조지원;박형민
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.135-147
    • /
    • 2008
  • In this paper, we propose a method for source localization in reverberant environments based on an adaptive eigenvalue decomposition (AED) algorithm which directly estimates channel impulse responses from a speaker to microphones. Unfortunately, the AED algorithm may suffer from whitening effects on channels estimated from temporally correlated natural sounds. The proposed method which applies sparse priors to the estimated channels can avoid the temporal whitening and improve the performance of source localization in reverberant environments. Experimental results show the effectiveness of the proposed method.

  • PDF

Matching Pursuit 방식을 이용한 OFDM 시스템의 채널 추정 (Channel estimation of OFDM System using Matching Pursuit method)

  • 최재환;임채현;한동석;윤대중
    • 방송공학회논문지
    • /
    • 제10권2호
    • /
    • pp.166-173
    • /
    • 2005
  • 본 논문에서는 직교 주파수 분할 다중 접속 (orthogonal frequency division multiplexing, OFDM) 시스템에서 MP (matching pursuit) 알고리듬을 이용하는 이동 채널 추정법을 제안한다. OFDM 시스템에서 기존의 채널추정 알고리듬으로 쓰이는 LS (least square) 알고리듬은 잡음의 영향으로 채널 추정 오류의 가능성을 가지고 있다. 본 논문에서는 MP 알고리듬을 이용하여 스파스(sparse)형태의 채널을 추정함으로써 다중경로 신호가 없다고 가정되는 시간 구간에서 발생될 수 있는 잡음에 의한 영향을 줄인다. 그리고 연속으로 전송되는 파일럿 정보를 이용하여 변화하는 채널을 추정한다. 64QAM,그리고 이동 다중 경로 페이딩 채널에 대해서 심볼 오율을 측정하여 제안된 알고리듬과 LS알고리듬의 성능을 비교한다.

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Weighted $l_1$-최소화기법을 이용한 Sparse한 채널 추정 기법 (Sparse Channel Estimation using weighted $l_1$-minimization)

  • 권석법;하미리;심병효
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.50-52
    • /
    • 2010
  • 통신 시스템의 성능을 향상시키는 핵심 문제 중에 하나인 채널을 추정하는 문제는 다양한 분야에서 연구되고 있다. 채널의 sparse한 특징으로 인해 기존의 linear square나 minimum mean square error보다 발전된 $l_1$-norm minimization 방법 등이 많이 연구되고 있다. 이에 본 논문은 sparse한 채널의 특징과 천천히 변화하는 채널환경 특징을 이용하여 기존의 방법에 비해 더 높은 성능의 채널 추정 기법을 연구한다. 천천히 변화하는 채널환경의 특징으로 인해 이전 채널 정보를 현재 채널 추정에 사용할 수 있고 sparse한 채널의 특징으로 $l_1$-norm minimization을 사용할 수 있다. 이러한 두 가지의 정보를 이용하여 weighted $l_1$-norm minimization 이용한 support detection후 MMSE를 이용한 채널 추정기법을 연구한다.

  • PDF

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).