DOI QR코드

DOI QR Code

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong (Guangdong Power Communication Technology Co., Ltd.) ;
  • Chen, Fangjiong (School of Electronic and Information Engineering, South China University of Technology) ;
  • Yu, Hua (School of Electronic and Information Engineering, South China University of Technology) ;
  • Shan, Zhilong (School of Computer Science, South China Normal University)
  • Received : 2020.10.31
  • Accepted : 2021.07.23
  • Published : 2021.11.30

Abstract

Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants U1701265 and in part by Key Program of Marine Economy Development(Six Marine Industries) Special Foundation of Department of Natural Resources of Guangdong Province(GDNRC [2020]009)

References

  1. Balakrishnan, J., Johnson Jr., C.R., 2000. Time-reversal diversity in decision feedback equalization. In: Proc. Of Allerton Conf. on Comm. Control and Computing. Citeseer.
  2. Benesty, J., Gay, S.L., May. 2002. An improved PNLMS algorithm. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2. IEEE. II-1881.
  3. Chen, S., Hanzo, L., Mulgrew, B., 2004. Adaptive minimum symbol-error-rate decision feedback equalization for multilevel pulse-amplitude modulation. IEEE Trans. Signal Process. 52 (7), 2092-2101. https://doi.org/10.1109/TSP.2004.828944
  4. Chen, S., Hanzo, L., Livingstone, A., 2006. Mber space-time decision feedback equalization assisted multiuser detection for multiple antenna aided sdma systems. IEEE Trans. Signal Process. 54 (8), 3090-3098. https://doi.org/10.1109/TSP.2006.877666
  5. Chen, F., Lin, S., Zheng, B., Li, Q., Wen, M., Liu, Y., Ji, F., 2017. Minimum symbol-error rate based adaptive decision feedback equalizer in underwater acoustic channels. IEEE Access 5, 25147-25157. https://doi.org/10.1109/ACCESS.2017.2772302.
  6. Chen, S., Tan, S., Xu, L., Hanzo, L., Jul. 2008. Adaptive minimum error-rate filtering design: a review. Signal Process. 88 (7), 1671-1697. https://doi.org/10.1016/j.sigpro.2008.01.012
  7. Cotter, S.F., Rao, B.D., Aug. 2002. Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 50 (3), 374-377. https://doi.org/10.1109/26.990897
  8. Das, R.L., Chakraborty, M., Apr. 2016. Improving the performance of the PNLMS algorithm using l1 norm regularization. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 24 (7), 1280-1290. https://doi.org/10.1109/TASLP.2016.2552578
  9. Duan, W., Tao, J., Zheng, Y.R., 2017. Efficient adaptive turbo equalization for multiple-input-multiple-output underwater acoustic communications. IEEE J. Ocean. Eng. 43 (3), 792-804. https://doi.org/10.1109/joe.2017.2707285
  10. Duttweiler, D.L., Sep. 2000. Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8 (5), 508-518. https://doi.org/10.1109/89.861368
  11. Feng, X., et al., 2012. Sparse Equalizer Filter Design for Multi-Path Channels. Massachusetts Institute of Technology. Ph.D. thesis.
  12. Gong, M., Chen, F., Yu, H., Lu, Z., Hu, L., Feb. 2013. Normalized adaptive channel equalizer based on minimal symbol-error-rate. IEEE Trans. Commun. 61 (4), 1374-1383. https://doi.org/10.1109/TCOMM.2013.13.120698
  13. Hoyer, P.O., Nov 2004. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457-1469.
  14. Kocic, M., Brady, D., Stojanovic, M., 1995. Sparse equalization for real-time digital underwater acoustic communications. In: 'Challenges of Our Changing Global Environment'. Conference Proceedings, vol. 3. OCEANS'95 MTS/IEEE, pp. 1417-1422. IEEE.
  15. Liu, L., Sun, D., Zhang, Y., 2017. A family of sparse group lasso rls algorithms with adaptive regularization parameters for adaptive decision feedback equalizer in the underwater acoustic communication system. Phys. Commun. 23, 114-124. https://doi.org/10.1016/j.phycom.2017.03.005
  16. Pelekanakis, K., Chitre, M., Nov. 2010. Comparison of sparse adaptive filters for underwater acoustic channel equalization/estimation. In: 2010 IEEE International Conference on Communication Systems. IEEE, pp. 395-399.
  17. Pelekanakis, K., Chitre, M., 2012. New sparse adaptive algorithms based on the natural gradient and the l0-norm. IEEE J. Ocean. Eng. 38 (2), 323-332. https://doi.org/10.1109/JOE.2012.2221811
  18. Qingwei, M., Jianguo, H., Jing, H., Chengbing, H., Chuang, M., 2012. An improved direct adaptive multichannel turbo equalization scheme for underwater communications. In: 2012 Oceans-Yeosu. IEEE, pp. 1-5.
  19. Rupp, M., Cezanne, J., 2000. Robustness conditions of the lms algorithm with timevariant matrix step-size. Signal Process. 80 (9), 1787-1794. https://doi.org/10.1016/S0165-1684(00)00088-8
  20. Singer, A.C., Nelson, J.K., Kozat, S.S., 2009. Signal processing for underwater acoustic communications. IEEE Commun. Mag. 47 (1), 90-96. https://doi.org/10.1109/MCOM.2009.4752683
  21. Song, A., Senne, J., Badiey, M., Smith, K.B., 2011. Underwater acoustic communication channel simulation using parabolic equation. In: Proceedings of the Sixth ACM International Workshop on Underwater Networks. ACM, 2:1-2:5.
  22. Stojanovic, M., Preisig, J., Feb. 2009. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag. 47 (1), 84-89. https://doi.org/10.1109/MCOM.2009.4752682
  23. Stojanovic, M., Catipovic, J.A., Proakis, J.G., 1994. Phase-coherent digital communications for underwater acoustic channels. IEEE J. Ocean. Eng. 19 (1), 100-111. https://doi.org/10.1109/48.289455
  24. Tao, J., An, L., Zheng, Y.R., 2017. Enhanced adaptive equalization for mimo underwater acoustic communications. In: OCEANS 2017-Anchorage. IEEE, pp. 1-5.
  25. Wang, K., Chen, S., Liu, C., Liu, Y., Xu, Y., 2015. Doppler estimation and timing synchronization of underwater acoustic communication based on hyperbolic frequency modulation signal. In: 2015 IEEE 12th International Conference on Networking. Sensing and Control, pp. 75-80. https://doi.org/10.1109/ICNSC.2015.7116013.
  26. Wu, Y., Zhu, M., Li, X., 2015. Sparse linear equalizers for turbo equalizations in underwater acoustic communication. In: OCEANS 2015-MTS/IEEE Washington. IEEE, pp. 1-6.
  27. Xu, L., Zhong, X., Yu, H., Chen, F., Ji, F., Yan, S., Feb. 2018. Spatial and time-reversal diversity aided least-symbol-error-rate turbo receiver for underwater acoustic communications. IEEE Access 6, 9049-9058. https://doi.org/10.1109/ACCESS.2018.2805816.
  28. Yukawa, M., Yamada, I., Dec. 2009. A unified view of adaptive variable-metric projection algorithms. EURASIP J. Adv. Signal Process. 2009 34.
  29. Zheng, B., Chen, F., Ji, F., Yu, H., Nov. 2013. Least-symbol-error-rate adaptive decision feedback equalization for underwater channel. In: Proceedings of the Eighth ACM International Conference on Underwater Networks and Systems. ACM, p. 41.