• Title/Summary/Keyword: spalling of high performance concrete

Search Result 104, Processing Time 0.029 seconds

An Experimental Study on the Evaluation of Fire-Resist Performance of High-Strength Concrete Filled steel Tube Column at Fire (화재가열을 받은 고강도 콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구)

  • Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Han, Hee-Chul;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.193-197
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) that is an excellent internal force and deformation capacity because material and method are required to be diversification and High-Performance according to increase the super-high structure. And it is proposed to use high-strength Concrete Filled steel Tube Column. But it is difficult quantitative evaluation about fire-resist performance of CFT because steel tube bind concrete. Also, the case of high strength CFT is feared that spalling occur inside. Therefore, this study made CFT specimen that determine the factor(which is strength of concrete) and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, it tried to analyze internal temperature through nonlinear transient heat flow analysis.

  • PDF

Properties of Fire Resistance of High Strength Concrete Using Premixed-Cement Mixed with Synthetic Fiber (합성섬유 혼입 프리믹스시멘트 결합재를 사용한 고강도 콘크리트의 내화특성)

  • Hwang, Yin-Seong;Kim, Sung-Su;Jeon, Young-Su;Park, Chang-Soo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.381-384
    • /
    • 2008
  • This study investigated spalling prevention and fire resistance properties of the high strength concrete using pre-mixed cement containing fiber to prepare the method for the effective throwing of hybrid fiber. For result of a fire test, almost specimens were protected from fire except 15% of W/C. Totally, the pre-mixed cement containing fiber was favorable compared with passive mixing method for the spalling prevention. It is more effective to prevent spalling caused by fine diversion of fiber even in high strength concrete because it contained many corporate materials. Moreover, the temperature history of the side steel bar on the column test with pre-mixed cement containing fiber did not over 538$^{\circ}C$ which is the average for the standard of fire resistance performance.

  • PDF

Structural Capacity Evaluation of High Strength Concrete Short Columns with Various Design Parameters under High Temperatures (고온하에서 다양한 설계변수에 따른 고강도 콘크리트 단주의 구조 성능 평가)

  • Kim, Hee-Sun;Mun, Ji-Young;Park, Jee-Eun;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.637-645
    • /
    • 2011
  • It is well known that high strength concrete with compressive strength higher than 50 MPa shows severe material and structural damages under fire due to spalling. To understand degradation of structural capacity of fire damaged high strength concrete structures, not only thermo-mechanical behavior needs to be defined, but also structural behavior of high strength concrete member under high temperature needs to be investigated. In this study, structural tests are performed by applying axial loads on high strength concrete columns exposed at elevated temperatures for assigned amount of time. The tested columns are prepared to have different concrete strength and polypropylene fiber percentage. The test results show that structural capacity of the columns decreased with increased compressive strength of concrete under same heating condition. Especially, it is interesting to note that high strength concrete columns with polypropylene fiber for spalling proof did not improve structural capacity compared to the columns without polypropylene fiber. The findings from the test are able to improve fire proof design of high strength concrete structural members and predicting structural performance of fire damaged structural members.

Fire Resistance of Ultra-High Performance Concrete According to the Amount of Polypropylene Fiber (폴리프로필렌 섬유 혼입량에 따른 초고성능 콘크리트의 내화 특성)

  • Choi, Jeong-Il;Cho, Ki Hyeon;Yu, Hyun Sang;Kim, Hee Joon;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2020
  • The purpose of this study is to investigate the fire resistance of ultra-high-performance concrete according to the amount of polypropylene fiber. Different mixtures according to the amount of polypropylene fiber were exposed to a maximum temperature of 900℃; and explosive spalling, residual compressive strength, and ultrasonic velocity of each specimen were evaluated. Test results showed that the fire resistance can be improved by including a small amount of polypropylene fiber in ultra-high performance concrete. It was not observed that explosive spalling occur at a temperature of 900℃ when the polypropylene fibers over 0.4% were included. Residual compressive strength and ultrasonic velocity decreased by 48% and 44%, respectively, compared to those at room temperature.

Properties of Fire Endurance of High Performance RC Column with Laterral Confinement Method (횡구속 방법에 따른 고성능 RC 기둥 콘크리트의 내화특성)

  • Hwang Yin Seong;Kim Ki-Hoon;Bae Yeoun Ki;Lee Bo Hyeong;Lee Jae Sam;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.553-556
    • /
    • 2004
  • This paper is to investigate the spalling and fire endurance of high performance RC column member with PP fiber and lateral confinement of metal lath and non fire resistance removal type form. According to test results, combination of PP fiber and metal lath as well as use fire resistance non removal type form had favorable fire resistance by discharging internal vapour pressure and lateral confining. After fire endurance test, compressive strength decreased markedly caused by internal expansion pressure and crack. Residual strength of plain concrete was decreased to $22\%$. The use of PP fiber and lateral confinement of metal lath and non removal type form enhanced the residual strength above $40\%$. Especially, the combination of $0.1\%$ of PP fiber and lateral confinement with the level of 2.3T exhibited more than $51\%$ of residual strength. Therefore, to improve fire endurance and spalling resistance, the combination of $0.1\%$ of PP fiber and metal lath with 2.3T can be the proper measure.

  • PDF

Review on the Fire Resistance and Pumpability Performance of Fiber Reinforced High Strength Concrete

  • Kwon, Hae-Won;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 2013
  • Currently, many high-rise buildings are built in Korea for land-efficient utilization and vista. In high-rise buildings this tall, the use of high-strength concrete is essential to reduce the cross-section of structure members and secure axial load. However, this high strength concrete is vulnerable to spalling by fire, due to the water vapor pressure caused by the very high temperature in fire. To prevent this, the main method used is to reinforce the concrete with fiber. However, there has been little research on the pumpability of fiber reinforced high strength concrete. For this reason, this study features a performance review based on the properties and pumpability of fiber reinforced high strength concrete. In addition, the parameter of rheology was measured by extracting mortar from the concrete, and friction factor was measured through a 400 m horizontal pipe pumping test using the fiber reinforced high strength concrete. The basic information on fiber reinforced high strength concrete that we obtain through the experiments and review will contribute to the field.

Spalling Characteristics of High Performance Concrete According to Changes in PP Fiber Ratio and Type of Aggregate (PP섬유 혼입율 및 잔골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Jung, Hong-Keun;Kim, Won-Ki;Pei, Chang-Chun;Han, Min-Cheol;Yang, Seng-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.61-64
    • /
    • 2009
  • This study is reviewed fire resistance characteristics of high strength concrete according to changes in PP fiber mixing ratio and type of fine aggregate, and the results can be summarized as follows. As fire resistance characteristics, all plain crushed sands prevented spalling regardless of increase in mixing ratio of PP fiber. Mixtures other than the plain showed satisfactory spalling prevention when 0.05 % or more of PP fiber was mixed. After the fire resistance experiment, the plain showed 5.5 % of mass loss rate when fiber was not mixed and others could not be measured. According to increase in mixing ratio of fiber, river sand with fineness modulus of 2.2 showed most satisfactory result of 34 %${\sim}$42 %. Mass loss rate after fire resistance experiment was most satisfactory at about 10 % in the plain crushed sand without mixing of fiber, and all other mixes with 0.05 % PP fiber or more showed 5${\sim}$10 % loss rate.

  • PDF

A Fundamental Study on the Performance of Spalling Resistance of High Performance Concrete with Material of Lateral Confinement Subjected to Fire (화재시 횡구속재 변화에 따른 고성능 콘크리트의 폭열방지성능에 관한 기초적 연구)

  • 배정렬;황인성;홍상희;한민철;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.47-50
    • /
    • 2002
  • This paper presents the results of fire resistance properties of high performance concrete varying with fiber kinds and the size of metal lath in order to verify the validities of fiber on the spatting resistance by fire. Metal lath, glass fiber and carbon fiber are used to confine the concrete. According to test results, plain concrete without lateral confinement and confined concrete with glass fiber and carbon fiber show entire failure after exposed to fire, while confined concrete with metal lath take place in the form of slight surface spatting by fire, which has favorable spatting resistance of concrete. As for the effect of the size of metal lath, when the size of metal lath is more than 1.2mm of thickness, the residual strength of concrete exposed to fire maintains more than 80% of its original strength. However, glass fiber and carbon fiber does not perform desirable spatting resistance by fire due to loss of lateral confinement of fiber exposed to fire caused by melting of fiber and reducing bond strength between concrete and fiber.

  • PDF

Investigation on Improve Durability of Fiber-Reinforced High-Strength concrete (섬유보강 고강도 콘크리트의 내구성능 향상에 관한 검토)

  • Lee, Hye-Jin;Ha, Jung-Soo;Kim, Kyu-Jin;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.93-95
    • /
    • 2013
  • Recently, with the increase in the construction of ultra-high buildings and long-span structures, there is great demand for high-strength concrete which can reduce the structural weight and thickness of member sections. While developing high-strength concrete to meet performance requirements, certain issues at the design stage must also be considered. The issues include diseconomy from a great amount of per-unit cement, spalling failure by fire at ultra-high building, autogenous shrinkage caused by increased hydration activity of binder from use of a superplasticizer. Therefore, the purpose of this study is examined the strain characteristics of Fiber-reinforced-high-strength concrete(FRHSC), which differ from those of general concrete owing to autogenous shrinkage. Based on the experimental data, we proposed an autogenous shrinkage prediction model.

  • PDF

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.