• Title/Summary/Keyword: spalling of concrete

Search Result 351, Processing Time 0.035 seconds

Effect of Fire Induced Spalling on the Response of Reinforced Concrete Beams

  • Kodur, V.K.R.;Dwaikat, M.B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.71-81
    • /
    • 2008
  • A macroscopic finite element model is applied to investigate the effect of fire induced spalling on the response of reinforced concrete (RC) beams. Spalling is accounted for in the model through pore pressure calculations in concrete. The principles of mechanics and thermodynamics are applied to compute the temperature induced pore pressure in the concrete structures as a function of fire exposure time. The computed pore pressure is checked against the temperature dependent tensile strength of concrete to determine the extent of spalling. Using the model, case studies are conducted to investigate the influence of concrete permeability, fire scenario and axial restraint on the fire induced spalling and also on the response of RC beams. Results from the analysis indicate that the fire induced spalling, fire scenario, and axial restraint have significant influence on the fire response of RC beams. It is also shown that concrete permeability has substantial effect on the fire induced spalling and thus on the fire response of concrete beams. The fire resistance of high strength concrete beams can be lower that that of normal strength concrete beams due to fire induced spalling resulting from low permeability in high strength concrete.

An Experimental Study on the Explosive Spalling Properties of High Strength Concrete Structure Member (고강도 콘크리트 구조부재의 폭렬 특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.421-424
    • /
    • 2006
  • This study, in order for perceiving the mechanical attribute followed by the explosive spalling of high strength concrete material under high temperature and evaluating capacity of endurance of material, targets understanding capacity of endurance of material such as explosive spalling in high temperature, temperature by thickness of clothing, transformation extent, transformation speed and displacement, stocking the maximum load based on the Allowable Stress Design Method. As a result of experimenting the explosive spalling attribute of high strength concrete material, the one possibly causing serious damage is the 50 MPa concrete. In all aspects of 60 MPa concrete, explosive spalling happens. Especially, it is hazardous enough to reveal all the iron bar. All explosive spalling is intensively concentrated on the surface of concrete for the first $5{\sim}25$ minutes, which urges for the explosive spalling protection action. As a result of evaluating the structural safety by the transformation of high strength concrete, while beam assures the fire safety meeting regulation, 60 MPa shows the dramatic increase of transformation, which only counts 84% of safety. In a column, both the concrete exclusion and excessive explosive spalling are concentrated upper part of column, which brings about the dramatic transformation, so it only meets the 50% of safety regulation. Likewise, in 80, 100 MPa concrete which was never experimented considering the condition of domestic structural endurance stocking devices, the faster collapse is expected.

  • PDF

A Study on the Spalling Properties of High-Performance Concrete with the Kinds of Aggregate and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성에 관한 연구)

  • 한천구;양성환;이병렬;황인성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.69-77
    • /
    • 1999
  • A spalling is defined as the damages of concrete exposed to high temperature during the fire by causing cracks and localized bursting of small pieces of concrete. It is reported that spalling is caused by the vapor pressure and polypropylene(PP) fiber has an important role in protecting from spalling. This paper is a study on the properties and spalling resistance of high-performance concrete with the kinds of aggregate and the contents of PP fiber. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimenns after fire test regardless of the kinds of aggregate. Concrete contained more than 0.05% of PP fiber with the aggregate of basalt does not take place the spalling, while the concrete using granite and limestone does the surface spalling. It is found that residual compressive strength after exposed at high temperature has 50~60% of its original strength. Although specimens after exposed at high temperature is cured at water for 28days, they do not recover their original strength.

Investigation of Spalling Mechanism in High Performance Concrete Subjected to Fire (고성능 콘크리트의 화재시 폭렬성상에 관한 메카니즘 고찰)

  • Han, Min-Cheol;Kim, Seong-Hwan;Park, Yong-Kyu;Heo, Young-Sun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.99-102
    • /
    • 2006
  • This paper reviews the relevant literatures and investigates spalling mechanism of high strength concrete, in order to clearly inform spalling problem in fire. Firstly, we studies literatures on spalling occurrence and resistance methods. Secondly chemical change of concrete components in elevated temperature was presented. Finally, mechanism of the spalling occurrence and spalling resistance were carried out with fiber content. In addition, our research team introduced spalling mechanism, being different from other points of view, which has been generally accepted. To secure this mechanism theory, we investigate spalling properties of certain specimens fabricated by roller spindle and made with mortar or concrete condition.

  • PDF

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

Spalling Properties of High-Performance Concrete with the Kinds of Admixture and Polypropylene Fiber Contents (혼화재 종류 및 폴리프로필렌 섬유의 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성)

  • Han, Cheon-Goo;Yang, Seong-Hwan;Lee, Byung-Yul;Hwang, Yin-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.85-92
    • /
    • 2000
  • Recently. there has been steadily applied in high-performance concrete using powder type admixture in construction field. It has been reported that high-performance concrete is likely to cause the spalling by fire more seriously due to the dense microstructure. In this paper, spalling properties of high-performance concrete with the kinds of admixture and polypropylene(PP) fiber contents are presented. According to the experimental results concrete contained no PP fiber take place in the form of the surface spalling, regardless of admixture. Concrete contained more than 0.05% of PP fiber and admixture do not take place the spalling, however the concrete using silica fume do spalling. Concrete using blast furnace slag have good performance in spalling resistance. It is found that residual compressive strength has 60~70% of its original strength when spalling do not occur. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF

An Experimental Study on the Spalling Properties of Ultra High Strength Concrete with PP Fiber (초고강도 콘크리트의 섬유혼입률에 따른 폭렬특성에 관한 실험적 연구)

  • Lee, Tae-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.65-68
    • /
    • 2011
  • High strength concrete(HSC) has been mainly used in large SOC structures. HSC have superior property as well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. It is reported that spalling is caused by the vapor pressure under fire and polypropylene(PP) fiber has an important role in protecting from spalling. The spalling properties of ultra high strength concrete specimens with various contents of PP fiber were investigated in this study. In results, the content of PP fiber for spalling protection increases over 0.2 vol.% as the concrete strength increases to 120 MPa.

Spalling Properties of Ring-Type Restrained Concrete by Heating Conditions (가열조건에 따른 링형 구속 콘크리트의 폭렬특성)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • In this study, surface spalling and explosive spalling of ring-type ultra-high strength concrete under rapid heating and slow heating were investigated. In rapid heating, the internal temperature difference of the concrete is large, so that continuous surface spalling occurs. However, in slow heating, the difference in the internal temperature of the concrete is small, resulting in explosive spalling at a time. Since the heating condition has a great influence on the internal temperature of the concrete, it is necessary to consider the spalling of the concrete under various heating conditions.

  • PDF

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.

Optimum PP Fiber Dosage for the Control of Spalling of High Strength Reinforced Concrete Columns

  • Yoo, Suk-Hyeong;Shin, Sung-Woo;Kim, In-Ki
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.103-109
    • /
    • 2006
  • Spalling is defined as damages to concrete exposed to high temperature during fire, causing cracks and localized bursting of small pieces of concrete. As the concrete strength increases, the degree of damage caused by spalling becomes more serious due to impaired permeability. It is reported that polypropylene(PP) fiber has an important role in protecting concrete from spalling, and the optimum dosage of PP fiber is 0.2%. However, this study was conducted on non-reinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various quantity of PP fibers is investigated in this study. The results revealed that the ratio of unstressed residual strength of columns increased as the concrete strength increased and as the quantity of PP fiber increased from 0% to 0.2%. However, the effect of PP fiber quantity on residual strength of column was barely above 0.2%.