• Title/Summary/Keyword: space optics

Search Result 363, Processing Time 0.045 seconds

In Vivo Enhanced Indocyanine Green-Photothermal Therapy for a Subconjunctival Tumor

  • Kim, Chang Zoo;Lee, Sang Joon;Hwang, Sang Seok;Chae, Yu-Gyeong;Kwon, Daa Young;Ko, Taek Yong;Kim, Jun Hyeong;Jung, Min Jung;Masanganise, Rangarirai;Oak, Chulho;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • Indocyanine green (ICG) is a dye approved for use in clinical diagnostics. ICG remains in the intravascular space following intravenous administration, due to its ability to rapidly bind to the plasma proteins, and its therapeutic potential has been studied in well-vascularized cutaneous tumors. Here we have evaluated the clinical response of a subconjunctival tumor to photothermal therapy (PTT) using an ICG-enhanced near-infrared diode laser and its adverse effects, in a rabbit. 22 male New Zealand white rabbits with subconjunctival tumors were enrolled (control group 6, laser-only group 8, laser-with-ICG group 8). Rabbits in the laser-with-ICG group received ICG (twice, 2 mg/kg each time, intravenously) directly followed by irradiation with a diode laser (λ = 810 nm). Rabbits in the laser-only group were irradiated with the diode laser. ICG angiography, ultrasonography, and pathologic examination were performed to evaluate PTT response at specific time points (0, 2, and 4 weeks after PTT). Two weeks after initial treatment, the eight rabbits treated by laser with ICG showed a 100% response rate. There was no clinical response in both laser-only and control groups. ICG-PTT is a potential and effective palliative therapeutic modality for subconjunctival tumors.

Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas

  • Ma, Na;Jiang, Ping;Zeng, You Tao;Qiao, Xiao Zhen;Xu, Xian Feng
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.497-505
    • /
    • 2022
  • Topological photonic nanocavities are considered to possess outstanding optical performance, and provide new platforms for realizing strong interaction between light and matter, due to their robustness to impurities and defects. Here hybrid plasmonic topological photonic nanocavities are proposed, by embedding various plasmon nanoantennas such as gold nanospheres, cylinders, and rectangles in a topological photonic crystal corner-state nanocavity. The maximum quality factor Q and minimum effective mode volume Veff of these hybrid nanocavities can reach the order of 104 and 10-4 (𝜆/n)3 respectively, and the high figures of merit Q/Veff for all of these hybrid nanocavites are stable and on the order of 105 (𝜆/n)-3. The relative positions of the plasmon nanoantennas will influence the coupling strength between the plasmon structures and the topological nanocavity. The hybrid nanocavity with gold nanospheres possesses much higher Q, but relatively large Veff. The presence of a gold rectangular structure can confine more electromagnetic energy within a smaller space, since its Veff is smallest, although Q is lowest among these structures. This work provides an outstanding platform for cavity quantum electrodynamics and has a wide range of applications in topological quantum light sources, such as single-photon sources and nanolasers.

Discovery of a Radio Relic in the Massive Merging Cluster SPT-CL J2023-5535 from the ASKAP-EMU Pilot Survey

  • Kim, HyeongHan;Jee, M. James;Rudnick, Lawrence;Parkinson, David;Finner, Kyle;Yoon, Mijin;Lee, Wonki;Brunetti, Giangranco;Bruggen, Marcus;Collier, Jordan D.;Hopkins, Andrew M.;Michalowski, Michal J.;Norris, Ray P.;Riseley, Chris
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.30.1-30.1
    • /
    • 2020
  • The ASKAP-EMU survey is a deep wide-field radio continuum survey designed to cover the entire southern sky and a significant fraction of the northern sky up to +30°. Here, we report a discovery of a radio relic in the merging cluster SPT-CL J2023-5535 at z=0.23 from the ASKAP-EMU pilot 300 square degree survey (800-1088 MHz). The deep high-resolution data reveal a ~2 Mpc-scale radio halo elongated in the east-west direction, coincident with the intracluster gas. The radio relic is located at the western edge of this radio halo stretched ~0.5 Mpc in the north-south orientation. The integrated spectral index of the radio relic within the narrow bandwidth is α1088MHz800MHz = -0.76 ± 0.06. Our weak-lensing analysis shows that the system is massive (M200 = 1.04 ± 0.36 × 1015M⊙) and composed of at least three subclusters. We suggest a scenario, wherein the radio features arise from the collision between the eastern and middle subclusters. Furthermore, the direct link between the local AGN and the relic along with the discontinuities in X-ray observation hint us that we are looking at the site of re-acceleration.

  • PDF

Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator (중적외선 광 파라메트릭 발진기를 이용한 중적외선 분광기 성능 평가)

  • Nam, Hee Jin;Kim, Seung Kwan;Bae, In-Ho;Choi, Young-Jun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.154-158
    • /
    • 2019
  • We have used a mid-IR (mid-infrared) continuous-wave (cw) optical parametric oscillator (OPO), developed previously and described in Ref. 12, to build a performance-evaluation setup for a mid-IR spectrometer. The used CW OPO had a wavelength tuning range of $ 2.5-3.6{\mu}m$ using a pump laser with a wavelength of 1064 nm and a fan-out MgO-doped periodically poled lithium niobate (MgO:PPLN) nonlinear crystal in a concentric cavity design. The OPO was combined with a near-IR integrating sphere and a Fourier-transform IR optical spectrum analyzer to build a performance-evaluation setup for mid-IR spectrometers. We applied this performance-evaluation setup to evaluating a mid-IR spectrometer developed domestically, and demonstrated the capability of evaluating the performance, such as spectral resolution, signal-to-noise ratio, spectral stray light, and so on, based on this setup.

Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions (대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링)

  • Na, Jeongkyun;Kim, Byungho;Cha, Hyesun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.274-280
    • /
    • 2020
  • In this paper, the effect of atmospheric turbulence is numerically modeled and analyzed via a phase-screen model, in regard to long-range optical energy transfer using coherent beam combination. The coherent-beam-combination system consists of three channel beams pointing at a target at a distance of 1-2 km. The phase and propagation direction of each channel beam are assumed to be corrected in an appropriate manner, and the atmospheric turbulence that occurs while the beam propagates through free space is quantified with a phase-screen model. The phase screen is statistically generated and constructed within the range of fluctuations of the structure constant Cn2 from 10-15 to 10-13 [m-2/3]. Particularly, in this discussion the shape, distortion, and combining efficiency of the 3-channel combined beam are calculated at the target plane by varying the structure constant used in the phase-screen model, and the effect of atmospheric turbulence on beam-combination efficiency is analyzed. Analysis with this numerical model verifies that when coherent beam combination is used for long-range optical energy transfer, the received power at the target can be at least three times the power obtainable by incoherent beam combination, even for maximal atmospheric fluctuation within the given range. This numerical model is expected to be effective for analyzing the effects of various types of atmospheric-turbulence conditions and beam-combination methods when simulating long-range optical energy transfer.

A New Method For Measuring Acupoint Pigmentation After Cupping Using Cross Polarization (교차편광 촬영술(Cross Polarization Photographic Technique)를 이용한 부항요법의 배수혈 피부 색소 침착 변화 측정 평가)

  • Kim, Soo-Byeong;Jung, Byungjo;Shin, Tae-Min;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.30 no.4
    • /
    • pp.252-263
    • /
    • 2013
  • Objectives : Skin color deformation by cupping has been widely used as a diagnostic parameter in Traditional Korean Medicine(TKM). Skin color deformation such as ecchymoses and purpura is induced by local vacuum in a suction cup. Since existing studies have relied on a visual diagnostic method, there is a need to use the quantitative measurement method. Methods : We conducted an analysis of cross-polarization photographic images to assess the changes in skin color deformation. The skin color variation was analyzed using $L^*a^*b^*$ space and the skin erythema index(E.I.). The meridian theory in TKM indicates that the condition of primary internal organs is closely related to the skin color deformation at special acupoints. Before conducting these studies, it is necessary to evaluate whether or not skin color deformation is influenced by muscle condition. Hence, we applied cupping at BL13, BL15, BL18, BL20 and BL23 at Bladder Meridian(BL) and measured blood lactate at every acupoint. Results : We confirmed the high system measurement accuracy, and observed the diverse skin color deformations. Moreover, we confirmed that the $L^*$, $a^*$ and E.I. had not changed after 40 minutes(p>0.05). The distribution of blood lactate levels at each part was observed differently. Blood lactate level and skin color deformation at each part was independent of each other. Conclusions : The negative pressure produced by the suction cup induces a reduction in the volumetric fraction of melanosomes and subsequent reduction in epidermal thickness. The relationship between variations of tissue and skin properties and skin color deformation degree must be investigated prior to considering the relationship between internal organ dysfunction and skin color deformation.

A Study on Compensation of Disparity for Incorrect 3D Depth in the Triple Fresnel Lenses floating Image System (심중 프렌넬 렌즈 시스템에서 재생된 입체부양영상의 올바른 깊이감을 구현하기 위한 시차보정 방법에 대한 연구)

  • Lee, K.H.;Kim, S.H.;Yoon, Y.S.;Kim, S.K.
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.246-255
    • /
    • 2007
  • The floating image system (FIS) is a device to display input source in the space between fast surface of the display and an observer and it provides pseudo 3D depth to an observer when input source as real object or 2D image was displayed through the optical lens system in the FIS. The Advanced floating image system (AFIS) was designed to give more effective 3D depth than existing FIS by adding front and rear depth cues to the displayed stereogram, which it was used as input source. The magnitude of disparity and size of stereogram were strongly related each other and they have been optimized for presenting 3D depths in a non-optical lens systems. Thus, if they were used in optical lens system, they will have reduced or magnified parameters, leading to problem such as providing incorrect 3D depth cues to an observer. Although the size of stereogram and disparity were demagnified by total magnifying power of optical system, the viewing distance (VD) from the display to an observer and base distance (BD) for the gap between the eyes were fixed. For this reason, the quantity of disparity in displayed stereogram through the existing FIS has not kept the magnifying power to the total optical system. Therefore, we proposed the methods to provide correct 3D depth to an observer by compensating quantity of disparity in stereogram which was satisfied to keep total magnifying power of optical lenses system by AFIS. Consequently, the AFIS provides a good floating depth (pseudo 3D) with correct front and rear 3D depth cues to an observer.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Allopurinol Decreases Liver Damage Induced by Dermal Scald Burn Injury (피부 화상으로 유도된 간 손상에서 Allopurinol의 효과)

  • Cho, Hyun-Gug;Yoon, Chong-Guk;Park, Won-Hark
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.37-47
    • /
    • 2001
  • In order to investigate a pathogenesis of liver damage induced by skin burn, thermal injury was induced by scald burn on entirely dorsal surface in rats (total burn surface area $20\sim25\%$) except for inhalated injury. At 5 and 24 h after scald burn, biochemical assay and morphological changes in serum and liver tissue were examined. Skin burn increased liver weight (% of body weight, p<0.05) and the activity of serum aniline amino-transferase (ALT, p<0.05), in addition, the activity of xanthine oxidase (XO), an enzyme of oxygen free radical generating system, was elevated (p<0.01) in serum, but not in skin and in liver. Postburn treatment of allopurinol intraperitoneally decreased liver weight, serum ALT activity and serum XO activity. Scald burn induced ultrastructurally swelling of endoplasmic reticulum, ribosome detachment, accumulation of lipid, dilatation of bile canaliculi and intercellular space, neutrophil infiltration, activation of Kupffer's cells and degeneration of hepatocytic microvilli. Futhermore , thermal injury decreased not only the protein concentration in plasma but also the number of intravascular leukocytes, that indicates induction of edema formation with protein exudation and inflammation by neutrophil infiltration into the internal organs. However allopurinol injection after burn inhibited post burn ultrastructural changes. These data suggest that acute dermal scald burn injury leads to liver damage, that is related to elevation of xanthine oxidase activity in serum. Xanthine oxidase may be a key role in the pathogenesis of liver damage induced by skin burn.

  • PDF

Single Path Phase-only Security System using Phase-encoded XOR Operations in Fourier Plane (푸리에 영역에서의 위상 변조 Exclusive-OR 연산을 이용한 단일 경로 위상 암호화 시스템)

  • Shin, Chang-Mok;Cho, Kyu-Bo;Kim, Soo-Joong;Noh, Duck-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.326-333
    • /
    • 2005
  • Phase-only encryption scheme using exclusive-OR rules in Fourier plane and a single path decryption system are presented. A zero-padded original image, multiplied by a random phase image, is Fourier transformed and its real-valued data is encrypted with key data by using XOR rules. A decryption is simply performed based on 2-1 setup with spatial filter by Fourier transform for multiplying phase-only encrypted data by phase-only key data, which are obtained by phase-encoding process, and spatial filtering for zero-order elimination in inverse-Fourier plane. Since the encryption process is peformed in Fourier plane, proposed encryption scheme is more tolerant to loss of key information by scratching or cutting than previous XOR encryption method in space domain. Compare with previous phase-visualization systems, due to the simple architecture without a reference wave, our system is basically robust to mechanical vibrations and fluctuations. Numerical simulations have confirmed the proposed technique as high-level encryption and simple decryption architecture.