We present an improved weak-lensing (WL) study of the high-z (z=0.87) merging galaxy cluster ACT-CL J0102-4915 ("El Gordo"), the most massive system known to date at z > 0.6. El Gordo has been known to be an exceptionally massive and rare cluster for its redshift in the current ACDM cosmology. Previous multi-wavelength studies have also found that the cluster might be undergoing a merging event showing two distinctive mass clumps and radio relics. The previous WL study revealed a clear bimodal mass structure and found that the entire system is indeed massive (M_{200a} = (3.13 ± 0.56) \times 10¹⁵ M_{sun}). This mass estimate, however, was obtained by extrapolation because the previous HST observation did not extend out to the virial radius of the cluster. In this work, we determine a more accurate mass estimate of the cluster using WL analysis utilizing a new set of WFC3/IR and wide-field ACS observations. While confirming the previous bimodal mass structure, we find that the new data yield a ~20% lower mass for the entire system (M_{200a} = (2.37 ± 0.28) × 10¹⁵ M_{sun}). We also discuss the rarity of the cluster in the ACDM paradigm and suggest an updated merging scenario based on our new measurement.

[7 GC-03] Discovery of a Radio Relic in the Massive Merging Cluster SPT-CL J2023-5535 from the ASKAP-EMU Pilot Survey

Kim HyeongHan¹, M. James Jee^{1,2}, Lawrence Rudnick³, David Parkinson⁴, Kyle Finner¹, Mijin Yoon^{1,5}, Wonki Lee¹, Giangranco Brunetti⁶, Marcus Brüggen⁷, Jordan D. Collier^{8,9}, Andrew M. Hopkins¹⁰, Michał J. Michałowski¹¹, Ray P. Norris^{12,13}, Chris Riseley^{14,15,16}

¹Yonsei University, Department of Astronomy, Seoul, Republic of Korea ²Department of Physics, University of California, Davis, California, USA ³Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota, USA ⁴Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of Korea ⁵Ruhr-University Bochum, Astronomical Institute, German Centre for Cosmological Lensing, Universitätsstr. 150, 44801 Bochum, Germany ⁶Istituto Nazionale di Astrofisica, Istituto di Radioastronomia Via P Gobetti 101, 40129 Bologna, Italy ⁷Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany ⁸Inter-University Institute for Data Intensive Astronomy, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa ⁹School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia ¹⁰Australian Astronomical Optics, Macquarie University, 105 Delhi Rd, North Ryde,

NSW 2113, Australia ¹¹Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, ul. Słoneczna 36, 60-286 Poznań, Poland ¹²Western Sydney University, Locked Bag 1797, Penrith South, NSW 1797, Australia ¹³CSIRO Astronomy & Space Science, PO Box 76, Epping, NSW 1710, Australia ¹⁴Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy ¹⁵INAF - Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy ¹⁶CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia

The ASKAP-EMU survey is a deep wide-field radio continuum survey designed to cover the entire southern sky and a significant fraction of the northern sky up to +30°. Here, we report a discovery of a radio relic in the merging cluster SPT-CL J2023-5535 at z=0.23 from the ASKAP-EMU pilot 300 square degree survey (800-1088 MHz). The deep high-resolution data reveal a ~2 Mpc-scale radio halo elongated in the east-west direction, coincident with the intracluster gas. The radio relic is located at the western edge of this radio halo stretched ~0.5 Mpc in the north-south orientation. The integrated spectral index of the radio relic within the narrow bandwidth is $\alpha_{800\,MHz}^{1088\,MHz} = -0.76 \pm 0.06.$ Our weak-lensing analysis shows that the system is massive $(M_{200} = 1.04 \pm 0.36 \times 10^{15} M_{\odot})$ and composed of at least three subclusters. We suggest a scenario, wherein the radio features arise from the collision between the eastern and middle subclusters. Furthermore, the direct link between the local AGN and the relic along with the discontinuities in X-ray observation hint us that we are looking at the site of re-acceleration.

[7 GC-04] Circumnuclear gas around the central AGN in a cool-core cluster, A1644-South

Junhyun Baek¹, Aeree Chung¹, Jae-Woo Kim², Taehyun Jung^{2,3}

¹Department of Astronomy, Yonsei University, ²Korea Astronomy and Space Science Institute (KASI), ³University of Science and Technology (UST)

We present the properties of circumnuclear gas associated with the AGN located in the center of Abell 1644-South. A1644-S is the main cluster in a merging system, which is also known for gas sloshing in its core as seen in X-ray. The X-ray emission of A1644-S shows a rapidly declining profile, indicating the presence of cooling gas flow.