• Title/Summary/Keyword: soybean seedling

Search Result 90, Processing Time 0.023 seconds

Changes in concentration of tocopherols and fatty acids during germination and maturation of soybean(Glycine max) (대두의 발아 및 성숙과정중 토코페롤과 지방산의 변화)

  • Lee, In-Bog;Chang, Ki-Woon
    • Applied Biological Chemistry
    • /
    • v.36 no.2
    • /
    • pp.127-133
    • /
    • 1993
  • The concentrations of tocopherols and compositions of fatty acids during germination and maturation of soybean seeds were determined by HPLC and GC. In germination stages, when the length of seedling axis was about 10 cm, the contents of total tocopherols and lipids were the highest. At the early phase of pod filling on field condition, the concentration of ${\delta}-tocopherol$ in soybean seeds was the highest, but, in further pod filling, the content of ${\delta}-tocopherol$ decreased continuously, and ${\alpha}-$ and ${\gamma}-tocopherol$ increased. Accumulation of oil during pod filling seems to be determined at the beginning. There seem positive correlations between several tocopherol homologues and fatty acids.

  • PDF

Mobilization of Proteins in the Cotyledons of Germinating Soybeans(Glycine max) (발아중인 대두 (Glycine max)에서의 단백질 유동)

  • Song, Young-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.650-658
    • /
    • 1988
  • The mobilization of proteins in the cotyledons of germinating soybean seeds (Glycine mar [L.] Merr.) and seedlings was studied by using light microscopy and transmission electron microscopy. The cotyledon tissues of soybean. were packed with protein bodies(diameter $0.1-15{\mu}m$) where storage protein of soybean is deposited. Degradation of protein bodies started in the epidermis and vascular tissues. After swelling of the protein bodies, autolysis of storage proteins began while the external membrane remained unbroken. Hydrolysis of proteins could be internal or peripheral and fusion might begin before complete protein degradation. Possible instances of vacuolar fusion were encountered in some cells. In all cases, the result of degradation was the same; the central vacuole of the cell. At the late stages of seedling growth, breakdown of tonoplast was observed in some cells.

  • PDF

Increase in the Chlorophyll Contents by Over-expression of GmNAP1 Gene in Arabidopsis Plant (애기장대에서 GmNAP1의 과발현으로 인한 엽록소 함량 증가)

  • Park, Phun-Bum;Ahn, Chul-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1563-1568
    • /
    • 2010
  • In the course of a research concerning the molecular mechanism of hypocotyl elongation that occurs during soybean seedling growth in darkness, we have generated a number of ESTs from a cDNA library prepared from the hypocotyls of dark-grown soybean seedlings. Comparison of the ESTs assigned a cDNA clone as a putative plastidic ATP-binding-cassette (ABC) protein homologue. The soybean GmNAP1 protein contains an N-terminal transit peptide which targets it into the chloroplast. The transcription level of the GmNAP1 gene was investigated under continuous red light, continuous far-red light, and complete darkness. The main function of this NAP1 protein is the transport of protoporphyrin IX which is the precursor of chlorophyll from the cytoplasm to the chloroplast. The GmNAP1 gene was transferred into the Arabidopsis under the CaMV 35S promoter. The chlorophyll level of this transgenic Arabidopsis plant was much higher than the chlorophyll level of the wild type Arabidopsis plant.

Multiple Shoot Formation from Cotyledonary Nodes of Soybean Cultivars (대두 품종에 따른 자엽절에서의 다신초 형성)

  • Ha, Keon-Soo;Han, Tae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • For the plant regeneration of soybean (Glycine me L. Merr.), the shoot formation rate, optimal medium and tissue conditions were examined using Korean soybean cultivars. Among the parts of seedling, a node that includes one cotyledon showed the highest shoot formation rate among other tissues. Half-strength B5 medium was more efficient than full strength medium. Formation rates of pair shoots (1 to 2 shooting) were higher in the when benzyl adenine was supplemented. The formation rates of multiple shoots, that is, 4 to 5 in shooting, were high when thidiazuron was supplemented. Multiple shoot was de novo formed in cutting side of cotyledonary node. The effective concentration of thidiazuron for shoot induction treatment was 2 mg/L. Among the 27 cultivars, multiple shoot formation rates were high in the 11 cultivars including 'Heugcheongkong, and pair shoot formation rates were high in the 16 cultivars including 'Malikong'.

Distribution of Fatty Acids in Newly Developed Tissues of Soybean Seedlings

  • Dhakal, Krishna Hari;Jeong, Yeon-Shin;Ha, Tae-Joung;Baek, In-Youl;Yeo, Young-Keun;Hwang, Young-Hyun
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.32-41
    • /
    • 2011
  • The objective of this study was to determine the fatty acid composition of newly developed tissues of germinated soybean seeds. Five soybean accessions with varied fatty acid composition were allowed to germinate in sand under greenhouse conditions. Seedlings were picked up after 4, 6, 8, 10 and 12 days of germination and freeze dried. The fatty acid composition of the newly developed tissues was analyzed by gas chromatography. Significant variation in fatty acid composition was observed between accessions, days of germination, and variety ${\times}$ day of germination in whole and the cotyledons. In the case of newly developed five tissues, significant variation in fatty acid composition were observed between days of germination except oleic acid for root, hypocotyl and epicotyl stem and except stearic acid for hypocotyl and unifoliate leaves while all the parameters were significantly different for accession. Significant interactions of accession and days of germination were observed for palmitic, linoleic and linolenic acid in all tissues; only for oleic acid in hypocotyl, epicotyl and unifoliate leaves; and only for stearic acid in root, hypocotyl, epicotyl and unifoliate leaves. During germination, the fatty acid composition of newly developed tissues changed dramatically but whole seedlings and cotyledons changed slightly. These tissues contained five major fatty acids as found in original seeds, but compositions were totally different from that of the seed: higher in palmitic, stearic and linolenic acid and lower in oleic and linoleic acid. New tissues conserved their fatty acid compositions regardless of genotypic variation in the original seeds.

Culturable Endophytes Associated with Soybean Seeds and Their Potential for Suppressing Seed-Borne Pathogens

  • Kim, Jiwon;Roy, Mehwish;Ahn, Sung-Ho;Shanmugam, Gnanendra;Yang, Ji Sun;Jung, Ho Won;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.

Allelopathic and Autotoxic Effects of Alfalfa Plant and Soil Extracts

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • Alfalfa (Medicago sativa L.) plants have been reported to be autotoxic as well as allelopathic. Laboratory and greenhouse experiments through petri-dish and pot test were conducted to determine autotoxic effects of alfalfa leaf and soil extracts on the germination or early seedling growth of alfalfa, and to evaluate allelopathic effects of alfalfa leaf residues on alfalfa, barnyard grass, com, eclipta and soybean. Alfalfa seed germination was delayed depending on aqueous extract concentration, with no difference in final germination after 48 hours. Alfalfa root length was more sensitive to the autotoxic chemicals from leaf extracts than was germination or shoot length. Root growth of alfalfa was significantly inhibited at extract concentration of more than 1 g dry tissue/L (g $\textrm{L}^{-1}$). Hypocotyl growth, however, was not affected by all the concentrations of leaf extracts. Soil extracts from 4-yr-old alfalfa stand significantly reduced alfalfa root length by 66%, while soil extracts from 0,1, and 3yr-old stand stimulated root length up to 14-32% over the control. Residue incorporation with dry matters of alfalfa leaf at 100 g $\textrm{kg}^{-1}$ reduced seedling length of several crop and weed species, ranging from 53 to 87% inhibition. Addition of nutrient solution into alfalfa leaf extracts alleviated alfalfa autotoxic effect. This result indicates alfalfa leaf and soil extracts or residues could exert autotoxic as well as allelopathic substances into soil environments during and after establishment.

Phytotoxic Effect of Lettuce (Lactuca sativa L.) Leaf Extract on Seedling Growth of Crops and Weeds

  • Chon, Sang-Uk;Choi, Seong-Kyu
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.69-76
    • /
    • 2004
  • Lettuce (Lactuca sativa L.) is known to contain water-soluble substances that are biologically active. Aqueous or methanol extracts and residues from leaves of lettuce plants were assayed to determine their allelopathic effects, and the causative allelochemicals from fractions were quantified by means of HPLC analysis and bioassayed. Extracts from oven-dried leaf samples were more phytotoxic than those from freeze-dried samples. Leaf extracts of 40 g L$^{-1}$ were completely inhibitory on root growth of alfalfa (Medicago sativa L.), while root growths of barley (Hordeum vulgare L.) and soybean (Glycine max L.) were less sensitive. Early seedling growth of both alfalfa and barnyard grass (Echinochloa crus-galli) was significantly reduced by methanol leaf extracts. The major allelopathic substances analyzed by HPLC were coumarin, trans-cinnamic acid, o-coumaric acid, p-coumaric acid and chlorogenic acid. Of them p-coumaric acid was found as the greatest amount (8.9 mg 100 g$^{-1}$ ) in the EtOAc fraction; only coumarin was found in all the fractions. Hexane and EtOAc fractions of L. sativa reduced alfalfa root growth more than did BuOH and water fractions. These results suggest that lettuce had potent herbicidal activity, and that its activity differed depending on type and amount of causative compounds by fraction.

  • PDF

Growth and Yield Responses of Soybean to Planting Density in Late Planting (남부지방 콩 만파 재배 시 재식밀도에 따른 생육 및 수량변이)

  • Park, Hyeon-Jin;Han, Won-Young;Oh, Ki-Won;Ko, Jong-Min;Bae, Jin Woo;Jang, Yun Woo;Baek, In Youl;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.343-348
    • /
    • 2015
  • Soybean is one of the important food crop around the world. Especially in East Asia, it is the main ingredient for traditional food like soy sauce and soy paste. The double cropping system including soybean following onion, Chinese cabbage, and potato is widely adopted in Southern region of Korea. In this system, sowing date of second crop (soybean) can be delayed depending on first crops' growth period and weather condition. When planting date is delayed it is known that soybean yield is declined because of shorter vegetative growth period and earlier flowering induced by warm temperature and changes in photoperiod. The objective of this study was to determine soybean growth and yield responses as plant populations at late planting date. Field experiment was conducted at Department of Functional Crop, National Institute of Crop Science, RDA located in Miryang, Gyeongsangnam-Do for two years ('13-'14) in upland field with mid-late maturity cultivar Daewon. A split-plot block design was used with three replications. Main plots were three sowing dates from June 20 to July 20 with 15 days intervals, and subplots were 4 levels of planting densities. Data of maturity (R8) was recorded, yield components and yield were examined after harvesting. Experimental data were analyzed by using PROC GLM, and DMRT were used for mean comparison. Optimum planting population for maximizing soybean yield in late planting which compared with standard population. In mid-June planting, higher planting density causes increased plant height and decreased diameter which lead to higher risk of lodging, however, reduced growth period due to late planting alleviated this problem. Therefore higher seeding rates can provide protection against low seedling emergence caused by late planting in this region.

Fungi Associated with Soybean Seed, their Pathogenicity and Seed Treatment (콩 종자(種子)에서 분리(分離)한 사상균(絲狀菌), 그 병원성(病原性) 및 종자(種子) 소독(消毒)에 관한 연구(硏究))

  • Lee, Du-Hyung
    • The Korean Journal of Mycology
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 1984
  • Alternaria tenuis, Arthrobotrytis sp., Aspergillus spp., Cephalosporium sp., Cladosporium sp., Cylindrocarpon sp., Fusarium equiseti, F. moniliforme, F. semitectum, F. solani, Penicillium spp., Rhizopus sp. were saprophytic fungi and Cercospora kikuchii, Colletotrichum truncatum, Diaporthe phaseolorum var. sojae and Fusarium oxysporum were pathogenic fungi detected from 14 seed samples of soybean. Initial symptoms caused by C. kikuchii, C. truncatum, D. phaseolorum sojae and F. oxysporum on seedlings from naturally infected seed by the test tube agar method have been described and discussed. Soybean seeds infected with C. truncatum, D. phaseolorum sojae and F. oxysporum reduced germination of seeds and have influenced on the growth of soybean seedling caused by C. kikuchii. Surface-sterilized soybean seedlings became diseased in the test tube agar artificially inoculated with C. kikuchii, C. truncatum and D. phaseolorum sojae isolated from naturally infected soybean seeds. F. oxysporum showed very weak pathogenicity. Seed disinfectants of Benlate-T, Homai, Tecto and Sisthane have effective to C. kikuchii, C. truncatum, D. phaseolorum sojae and F. oxysporum. Arasan, Captan, Busan-30 and Mercron were inferior to C. kikuchii but effective against others. Seed disinfectants treated in this experiment have increased seed germination campared with non-treatment.

  • PDF