Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.05.2022.0064

Culturable Endophytes Associated with Soybean Seeds and Their Potential for Suppressing Seed-Borne Pathogens  

Kim, Jiwon (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Roy, Mehwish (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Ahn, Sung-Ho (Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration)
Shanmugam, Gnanendra (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Yang, Ji Sun (Department of Applied Bioscience, Dong-A University)
Jung, Ho Won (Department of Applied Bioscience, Dong-A University)
Jeon, Junhyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.38, no.4, 2022 , pp. 313-322 More about this Journal
Abstract
Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.
Keywords
antagonistic activity; crop protection; seed-borne disease; seed-borne pathogen; seed endophyte;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Berg, G. and Raaijmakers, J. M. 2018. Saving seed microbiomes. ISME J. 12:1167-1170.   DOI
2 Compant, S., Samad, A., Faist, H. and Sessitsch, A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19:29-37.   DOI
3 Cray, J. A., Connor, M. C., Stevenson, A., Houghton, J. D. R., Rangel, D. E. N., Cooke, L. R. and Hallsworth, J. E. 2016. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions. Microb. Biotechnol. 9:330-354.   DOI
4 Dai, Y., Li, X.-Y., Wang, Y., Li, C.-X., He, Y., Lin, H.-H., Wang, T. and Ma, X.-R. 2020. The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages. Microb. Biotechnol. 13:1461-1476.   DOI
5 Petrovic, K., Skaltsas, D., Castlebury, L. A., Kontz, B., Allen, T. W., Chilvers, M. I., Gregory, N., Kelly, H. M., Koehler, A. M., Kleczewski, N. M., Mueller, D. S., Price, P. P., Smith, D. L. and Mathew, F. M. 2021. Diaporthe seed decay of soybean [Glycine max (L.) Merr.] is endemic in the United States, but new fungi are involved. Plant Dis. 105:1621-1629.   DOI
6 Cruz, C. D., Mills, D., Paul, P. A. and Dorrance, A. E. 2010. Impact of brown spot caused by Septoria glycines on soybean in Ohio. Plant Dis. 94:820-826.   DOI
7 Kang, I.-J., Kim, K. S., Beattie, G. A., Chung, H., Heu, S. and Hwang, I. 2021. Characterization of Xanthomonas citri pv. glycines population genetics and virulence in a national survey of bacterial pustule disease in Korea. Plant Pathol. J. 37:652-661.   DOI
8 Berg, G., Koberl, M., Rybakova, D., Muller, H., Grosch, R. and Smalla, K. 2017. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 93:fix050.
9 Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   DOI
10 Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z. and Crous, P. W. 2013. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1-41.   DOI
11 Kumar, K., Verma, A., Pal, G., Anubha, White, J. F. and Verma, S. K. 2021. Seed endophytic bacteria of pearl millet (Pennisetum glaucum L.) promote seedling development and defend against a fungal phytopathogen. Front. Microbiol. 12:774293.   DOI
12 Messina, M. J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70(3 Suppl):439S-450S.   DOI
13 Klindworth, A., Pruess, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glockner, F. O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1.   DOI
14 Gitaitis, R. and Walcott, R. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45:371-397.   DOI
15 Johnston-Monje, D., Gutierrez, J. P. and Lopez-Lavalle, L. A. B. 2021. Seed-transmitted bacteria and fungi dominate juvenile plant microbiomes. Front. Microbiol. 12:737616.   DOI
16 Kim, H. and Lee, Y.-H. 2021. Spatiotemporal assembly of bacterial and fungal communities of seed-seedling-adult in rice. Front. Microbiol. 12:708475.   DOI
17 Bell, J. 2008. A simple way to treat PCR products prior to sequencing using ExoSAP-IT. Biotechniques 44:834.   DOI
18 Li, S., Sciumbato, G., Boykin, D., Shannon, G. and Chen, P. 2019. Evaluation of soybean genotypes for reaction to natural field infection by Cercospora species causing purple seed stain. PLoS ONE 14:e0222673.   DOI
19 Soares, A. P. G., Guillin, E. A., Borges, L. L., da Silva, A. C. T., de Almeida, A. M. R., Grijalba, P. E., Gottlieb, A. M., Bluhm, B. H. and de Oliveira, L. O. 2015. More Cercospora species infect soybeans across the Americas than meets the eye. PLoS ONE 10:e0133495.   DOI
20 Pirttila, A. M., Mohammad Parast Tabas, H., Baruah, N. and Koskimaki, J. J. 2021. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9:817.   DOI
21 Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511.   DOI
22 Sprockett, D., Fukami, T. and Relman, D. A. 2018. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15:197-205.   DOI
23 Pirofski, L.-A. and Casadevall, A. 2012. Q&A: What is a pathogen? A question that begs the point. BMC Biol. 10:6.   DOI
24 Hariharan, G. and Prasannath, K. 2021. Recent advances in molecular diagnostics of fungal plant pathogens: a mini review. Front. Cell. Infect. Microbiol. 10:600234.   DOI
25 Matsumoto, H., Fan. X., Wang, Y., Kusstatscher, P., Duan, J., Wu, S., Chen, S., Qiao, K., Wang, Y., Ma, B., Zhu, G., Hashidoko, Y., Berg, G., Cernava, T. and Wang M. 2021. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7:60-72.   DOI
26 Nelson, E. B. 2018. The seed microbiome: origins, interactions, and impacts. Plant Soil 422:7-34.   DOI
27 Petrovic, K., Vidic, M., Riccioni, L., Dordevic, V. and Rajkovic, D. 2015. First report of Diaporthe eres species complex causing seed decay of soybean in Serbia. Plant Dis. 99:1186.
28 Rochefort, A., Simonin, M., Marais, C., Guillerm-Erckelboudt, A.-Y., Barret, M. and Sarniguet, A. 2021. Transmission of seed and soil microbiota to seedling. mSystems 6:e0044621.   DOI
29 Singh, S. K., Strobel, G. A., Knighton, B., Geary, B., Sears, J. and Ezra, D. 2011. An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb. Ecol. 61:729-739.   DOI
30 Sun, S., Kim, M. Y., Chaisan, T., Lee, Y.-W., Van, K. and Lee, S.-H. 2013. Phomopsis (Diaporthe) species as the cause of soybean seed decay in Korea. J. Phytopathol. 161:131-134.   DOI
31 White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Michael, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA.
32 Myung, I.-S., Kim, J.-W., An, S. H., Lee, J. H., Kim, S. K., Lee, Y.-K. and Kim, W. G. 2009. Wildfire of soybean caused by Pseudomonas syringae pv. tabaci, a new disease in Korea. Plant Dis. 93:1214.
33 Bziuk, N., Maccario, L., Straube, B., Wehner, G., Sorensen, S. J., Schikora, A. and Smalla, K. 2021. The treasure inside barley seeds: microbial diversity and plant beneficial bacteria. Environ. Microbiome 16:20.   DOI