• Title/Summary/Keyword: soybean cells

Search Result 311, Processing Time 0.024 seconds

Effects of Fermented Soybean upon Anti-inflammation and Intestinal Mucous Membrane Permeability (청국장의 항염증 및 장점막 투과성 개선 효과)

  • Kim, Hyung-Gu;Lee, Myeong-Jong;Kim, Ho-Jun;Kim, Ki-Cheol;Bose, Shambhunath
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.12 no.1
    • /
    • pp.33-47
    • /
    • 2012
  • Objectives This study was designed to investigate the effects of fermented soybean upon anti-inflammation, cytotoxicity, antioxidant and intestinal mucous membrane permeability by measuring the cell viability, NO (nitric oxide) production, DPPH, Polyphenol, HRP and TEER in cells like Raw 264.7 and HCT 116 using fermented soybean. Methods Raw 264.7 cell and HCT 166 cell were used in this study. And fermented soybean powders were used for the experimental group and soybean powders for the control group. There was inflammation response upon using lipopolysaccharide(LPS). Fermented soybean powders and soybean powders were in a respectively different dose added to the cells with LPS. MTT assay, NO, DPPH and Polyphenol measurement, TEER, HRP were conducted for each cell. The results of this study were presented in mean and standard deviation. Results 1. In Raw 254.7 cells added with $100{\mu}l/ml$ unfermented soybean powders, 104.95% higher than 62.59% was measured. In Raw 254.7 cells added with $100{\mu}l/ml$ fermented soybean powders, there was 74.90% measured higher than 62.59%, which was a significant result. 2. By a gradual increase of unfermented soybean powders like $0.1{\mu}l/ml$, $1.0{\mu}l/ml$, $10{\mu}l/ml$, $100{\mu}l/ml$, the measured NO were also gradually decreased $53.12{\mu}M$, $47.57{\mu}M$, $37.02{\mu}M$, $28.16{\mu}M$. In case of cells added with fermented soybean powders, $43.95{\mu}M$ NO was measured in $0.1{\mu}l/ml$ which is significant, and in other cases, mostly measured over$ 56.72{\mu}M$. 3. It was inferred that fermented soybean powders have anti-inflammatory effects of maintaining intestinal mucous membrane permeability because the measured values of cells in both groups were all higher than $133.62{\Omega}$ measured of cells added with only LPS. And measured values of cells in both groups were all lower than 2.26 measured of cells added with only LPS. 4. In case of experiment DPPH and polyphenol measurement, fermented group was all higher than unfermented group. Conclusion From the results of conducting MTT assay, NO measurement, and TEER, HRP by using cells Raw 264.7 and HCT-116, even though there was no significance in the correlation between cytotoxicity, anti-inflammatory effects, both unfermented soybean powders and fermented soybean powders were shown to have intestinal mucous membrane permeability improvement effects. This effects could be applicable for autoimmune diseases, chronic inflammatory diseases and so additional studies are expected in the future. From the results of conducting DPPH, Polyphenol measurement, Fermented soybean may be useful as potential antioxidant.

EFFECT OF KOREAN BLACK SOYBEAN SEED ON THE CELLULAR PROLIFERATION AND THE PRODUCTION OF TYPE 111 COLLAGEN IN SKIN FIBROBLAST

  • Lee, Chungwoo;Hyeongbae Pyo;Youngho Cho;Park, Sungmin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.31-37
    • /
    • 1998
  • Soybeans are one of the major crops for human food resource; protein, lipid, and carbohydrate. In these days, they are widely using for cosmetics to supply phospholipid; natural surfactant. In this study we used black soybean seed in korea and observed many kinds of biochemical constituents; isoflavone, melatonin, crisantemine and calcium in ethanol extract. Also, its extract (we named it Flatonin) has been demonstrated that korean black soybean seed is able to stimulate the proliferation of NIH 373 cells and increase the production of type III collagen in NIH 373 and Malme-3 (human skin fibroblast) cells. The addition of korean black soybean to quiescent NIH 373 cells resulted in an increase of proliferation which was assayed by MTF method. The maximum effect of korean black soybean was detected in 0.4% korean black soybean treated cells which was comparable to that of 5% serum(96% of 5% serum effect). The addition of korean black soybean to NIH 373 and Malme-3 cells also increased the production of type III collagen in both cells. These results indicate that korean black soybean may enhance the repair process after injury and prevent aging processes in connective tissues.

  • PDF

Yak-kong and Soybean Induced Expression of Osteoprotegerin in MG-63 Human Osteoblastic Cells Requires Estrogen Receptor-$\beta$

  • Kim, Jin-Young;Cho, Yun-Hi
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmemopausal osteoporosis in oriental folk medicine. In our previous study, the treatment of Yak-kong and soybean increased estrogen receptor-a (ERa) expression and proliferation of MG-63 osteoblastic cells. In contrast, the increase of estrogen receptor-$\beta$ (ER$\beta$) expression in proliferating MG-63 cells with Yak-kong and soybean treatment was less pronounced, which suggested that ER$\beta$ may play a role rather in the regulation of bone cell differentiation To determine the role of ER$\beta$ in Yak-kong or soybean mediated regulation of bone cell differentiation, we established MG-63 cell lines stably expressing either ER$\beta$ or antisense ER$\beta$ RNAs. Increased expression of ER$\beta$ did not affect ERa expression and proliferation of MG-63 cells. However, increased expression of ER$\beta$ in MG-63 cells (ER$\beta$-MG63 cells) selectively enhanced Yak-kong or soybean induced expression of osteoprotegerin (OPG), a novel soluble glycoprotein which is secreted from osteoblasts and mediates the signal for osteoclast differentiation. Inhibition of ER$\beta$ expression by antisense ER$\beta$ RNAs (As-ER$\beta$-MG63) caused these cells to insensitize Yak-kong or soybean induced expression of OPG but increased MG-63 cell proliferation. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5{\times}l0^{-8}$ M, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/mL, on OPG expression in ER$\beta$-MG63 cell demonstrate that the enhanced expression of OPG with Yak-kong treatment is mediated by the synergistic effect of low leveled isoflavones in the extracts. Together, coupled with low level of ER expression in osteoclasts, our data demonstrate that ER$\beta$ in osteoblasts plays an important role in Yak-kong and soybean mediated inhibition of osteoclast differentiation indirectly by enhancing the expression of OPG.

The Growth Inhibition against Gastric Cancer Cell in Germanium or Soybean Sprouts Cultured with Germanium (게르마늄 및 게르마늄 분말 용해수로 재배한 콩나물의 위암세포 성장억제 작용)

  • 김은정;이경임;박건영
    • Korean journal of food and cookery science
    • /
    • v.20 no.3
    • /
    • pp.287-291
    • /
    • 2004
  • The growth inhibitory effect of germanium, or soybean sprouts cultured with germanium, on cancer cells was determined in the cultured gastric cancer cell line, AGS. The growth of AGS was significantly inhibited by the addition of 0.01-1% organic germanium (Ge-132) and germanium stone powder in MTT cytotoxicity assays. The juice from germanium treated soybean sprouts (GTS) inhibited the growth of AGS gastric cancer cells by 78-88% at concentrations of 2.5 or 5${\mu}\ell$. The juice from Seomoktae GTS revealed an especially higher growth inhibitory effect than that from the control soybean sprouts (germanium non-treated soybean sprouts, GNTS) in AGS. The results suggest that soybean sprouts cultured with germanium may exert an anticancer effect against gastric cancer cells.

Potential Effect of Monascus-fermented Soybean Extracts on Alkaline Phosphatase Activity of Human Osteoblast-like Cells

  • Pyo, Young-Hee;Kwon, Mi-Ja;Kim, In-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.434-437
    • /
    • 2008
  • The aim of this study was to investigate whether Monascus-fermented soybean extracts (MFSE) containing natural estrogen-like compounds such as isoflavones and mevinolins has potential effects on human osteoblast-like SaOS2 cells using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and alkaline phophatase (ALP) assaies. MFSE exerted biphasic dose-dependent effect; stimulating osteoblastic activity at low concentrations and inhibiting SaOS2 cells viability at high concentrations. At $10^{-8}-10^{-4}\;mg/mL$, MFSE is not only non-cytotoxic but also induced comparatively high ALP activity on SaOS2 cells. ALP activity (%) significantly increased (220.1%, p<0.05) when SaOS2 cells were treated with MFSE at a concentration of $10^{-5}\;mg/mL$, whereas slowly increased (185.6%, p<0.05) in unfermented soybean extracts (UFSE) at $10^{-3}\;mg/mL$. The potentially greater ALP activity of MFSE compared to the UFSE might partially be caused by its mevinolin, which was derived from the soybean during Monascus-fermentation. Our findings indicate that supplementation of MFSE may accelerate the speed of intracellular ALP synthesis by the bone cells when provided at optimal dosages.

Suppression of metastasis-related ERBB2 and PLAU expressions in human breast cancer MCF 7 cells by fermented soybean extract (발효대두추출물의 인간 유방암 MCF7 세포에서 전이 관련 ERBB2와 PLAU 발현 억제 효과)

  • Park, Jameon;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.320-324
    • /
    • 2018
  • Chunkookjang, fermented soybean is rich in diverse oligopeptides which derived from cleavage of soybean proteins during fermentation. Microarray data containing differently expressed genes in breast cancer cells treated with fermented soybean extract and well known breast cancer metastasis markers were combined, and a new network was constructed. It is used to check interactions between the marker proteins and the differently expressed genes. Based on the network analysis, PLAU (plasminogen activator, urokinase, uPA) and ERBB2 (epidermal growth factor receptor 2) are chosen as possible metastasis genes. We treated breast cancer MCF7 cells with fermented soybean extract and measured expression levels of PLAU and ERBB2. Fermented soybean extract suppressed PLAU and ERBB2 expressions conspicuously. In the cancer cells treated with fermented soybean extracts, an inflammation marker, NO production was also reduced. It will be interesting to find specific peptides to suppress PLAU and ERBB2 expressions in human breast cancer cells.

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

Anti-tumor Effects of Soybeans and Fermented Soybean Paste

  • Lee, Sung-Lim;Kim, Jong-Gyu
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.182-184
    • /
    • 2004
  • Oral cancer is the sixth most common cancer globally. The effects of several extracts from soybeans and Korean soybean paste (doen-jang) on the growth of human oral carcinoma cells in vitro were assessed. We prepared petroleum ether extract, ethyl acetate extract, chloroform extract, methanol extract, and water extract from soybeans and soybean paste. We used KB cell, which is an oral epidermoid carcinoma cell, and investigated proliferation of the tumor cells using MTT method. Each extract of soybean paste suppressed the KB cell proliferation. A dose-response relationship was observed between the level of ethyl acetate extract of soybean paste and its suppression of the cell proliferation. The effects of soybean extracts were lower than those of soybean paste extracts. The effects might be enhanced by the fermentation of soybeans. The results of this work indicate that extracts from soybeans and Korean soybean paste could have potential as anti-tumor substances.

  • PDF

Soybean Peptides Induce Apoptosis in HeLa Cells by Increasing Oxidative Stress

  • Sung, Ho Joong;Jeong, Yu Jin;Kim, Jihyun;Jung, Eunsun;Jun, Jin Hyun
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • Soy proteins have been extensively studied because of its multiple health benefits. However, the effects of soy proteins on human cervical cancer cells are still unclear. Therefore, this study investigated the effects of soy proteins on HeLa cells and human fibroblasts by using soybean peptides (SPs). SPs selectively increased the generation of reactive oxygen species and apoptosis in HeLa cells but not in fibroblasts. In addition, SPs suppressed the migration of HeLa cells. Although the molecular mechanisms underlying the effects of SPs on human cervical cancer cells need to be investigated further, our findings provide insights on the therapeutic effects of soy protein on cervical cancer.

Effect of Acetylsalicylic Acid on the Reproduction of Soybean Cyst Nematode in Susceptible Soybean (감수성 콩에서 Acetylaslicylic Acid의 콩씨스트 선충 증식의 억제 효과)

  • ;R. D. Riggs
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.386-392
    • /
    • 1998
  • Reproduction of the soybean cyst nematode (SCN), Heterodera glycines Ichinohe on the susceptible soybean cultivar, Lee 74, was significantly reduced by pre-, post- and simultaneous treatments of acetylsalicylic acid (ASA, aspirin). The control efficiencies were 60%, 64% and 87% for pre-, post- and simultaneous treatments, respectively. ASA had no significant effect on the survival of 2nd stage juveniles and their penetration into the soybean root tissues, but significantly inhibited the early stage nematode growth in the roots. Syncytia were formed 2∼3 days after inoculation in the susceptible soybean without ASA treatment, characterized by dense cytoplasm and increased cellular organelles such as mitochondria and endoplasmic reticulum. The nematode stylet was penetrated into the syncytial cell, and feeding tube was formed at the nematode stylet was penetrated into the syncytial cell, and feeding tube was formed at the nematode stylet entry. However, in the ASA treatments, syncytium was not formed or degenerated, depending on the root tissues. In the pre-treatments of ASA, nematode stylets did not penetrate into cells, showing callose-like cell wall thickening formed at the nematode probing sites, or retracted from the infected cells. The stylet penetration sites of syncytial cells appeared to be sealed off with fibrillar materials. With post-treatment of ASA, syncytia formed by the nematode were degenerated, characterized by degradation of syncytial cytoplasm.

  • PDF