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Soy proteins have been extensively studied because of its multiple health benefits. However, the effects of soy proteins 
on human cervical cancer cells are still unclear. Therefore, this study investigated the effects of soy proteins on HeLa cells 
and human fibroblasts by using soybean peptides (SPs). SPs selectively increased the generation of reactive oxygen species 
and apoptosis in HeLa cells but not in fibroblasts. In addition, SPs suppressed the migration of HeLa cells. Although the 
molecular mechanisms underlying the effects of SPs on human cervical cancer cells need to be investigated further, our 
findings provide insights on the therapeutic effects of soy protein on cervical cancer. 
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INTRODUCTION 

 
Soy foods are widely consumed for their health benefits 

(Istfan et al., 1983; Tham et al., 1998). Moreover, soy foods 
have gained considerable attention in Asia as well as in the 
Western hemisphere because of their protective effects 
against cardiovascular diseases and cancer (Food and Drug 
Administration, 1999). Several studies have shown that soy 
reduces the concentration of low-density lipoprotein (LDL) 
cholesterol and total cholesterol, which are the major 
causative factors of cardiovascular diseases in humans and 

animals (Kirk et al., 1998; Zhuo et al., 2004). In addition, 
soy prevents the conversion of LDL to oxidized LDL, 
which is implicated in the formation of foam cells during 
the development of atherosclerosis (Wiseman et al., 2000). 
Further, soy protects fibroblasts from ultraviolet light- and 
hydrogen peroxide-induced damage (Yoshikoshi et al., 1996; 
Kim et al., 2004). Consumption of high levels of soy is 
correlated with a decreased risk of different cancers (Omoni 
and Aluko, 2005). Previous studies have suggested that soy 
exerts antioxidants effects, which attenuate lipid peroxidation 
and oxidative DNA damage (Wiseman et al., 2000; Djuric 
et al., 2001). Furthermore, soy protein reduces the pro- 
duction of reactive oxygen species (ROS) in endothelial 
cells (Mahn et al., 2005). ROS enhance oxidative stress 
and oxidative DNA damage, which are implicated in in- 
flammation and development of cancer (Sung et al., 2010). 
Soy also exerts anticancer effects by inducing phase II 
enzymes such as glutathione S-transferase and quinone 
reductase, which are involved in the prevention of cancer 
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(Appelt and Reicks, 1999). Consistently, an epidemiological 
study showed that consumption of high levels of soy 
decreased the occurrence of prostate cancer (Jacobsen et al., 
1998). 

Besides exerting antiatherogenic and anticancer effects, 
soy induces the regeneration of damaged nerve cells and 
promotes wound healing in human fibroblasts (Nizamutdinova 
et al., 2009; Ma et al., 2010). Healing of the damaged skin 
is suggested to be optimal for perfect regeneration (Martin, 
1997). However, the healing process is complex, and the 
underlying mechanisms vary from one cell type to another. 
Cell migration, one of the several processes involved in 
wound healing, is also different between non-cancer and 
cancer cells. In epidermal cells, cell migration is essential 
for re-epithelialization (Clark et al., 1982), which is a desir- 
able process. However, enhanced cell migration during 
cancer development is a cause of concern, especially during 
angiogenesis and metastasis (Coussens and Werb, 2002). 
Although multiple studies have reported various effects of 
soy protein on different cells, the effects of soy protein on 
human cervical cancer cells remain unclear. Therefore, we 
investigated the effects of soy protein on HeLa cells and 
human fibroblasts by using soybean extracts (SPs). We 
observed that SPs increased oxidative stress and apoptosis 
in and suppressed the migration of HeLa cells. 

 
MATERIALS AND METHODS 

Materials 

Human cervical cancer cells (HeLa) and human fibroblasts 
were obtained from ATCC (Manassas, VA, USA) and Lonza 
(Normal, IL, USA), respectively. SPs (Glycine max var.) 
were prepared as described previously (Lee et al., 2012) and 
were kindly provided by Biospectrum Life Science Institute 
(Gyeonggi, Korea). Dulbecco's modified Eagle's medium 
(DMEM), fetal bovine serum (FBS), penicillin/streptomycin, 
and 5,6-chloromethyl-2,7-dichlorodihydrofluorescein di- 
acetate (CM-H2DCFDA, DCF) were purchased from Life 
Technologies Corporation (Carlsbad, CA, USA). Alexa 594-
conjugated anti-rabbit antibody and 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) were pur- 
chased from Sigma-Aldrich (St. Louis, MO, USA). TUNEL 

assay kits were obtained from Promega (Madison, WI, 
USA). 

Cell cultures 

HeLa cells and human fibroblasts were maintained in 
DMEM supplemented with 10% FBS and 1% penicillin/ 
streptomycin in a tissue culture incubator, unless otherwise 
indicated. 

Cell viability tests 

Cell viability was determined by performing MTT assay. 
Briefly, 1 × 104 cells were plated in 96-well plates a day 
before SP treatment. After SP treatment, the cells were 
grown for 24 h. Next, 20 μl of 5 mg/ml MTT solution in 
PBS and 100 μl of DMSO were added to each well to 
dissolve formazan crystals. Absorbance was measured at 
540 nm by using a plate reader (Bio-Rad Laboratories Ltd., 
Hercules, CA, USA). 

ROS measurement 

ROS measurements were performed as reported pre- 
viously (Kim et al., 2012). Briefly, the cells were plated at 
equal densities in 96-well plates a day before SP treatment. 
After SP treatment, the cells were incubated with 5 μM DCF 
for 30 min in a tissue culture incubator and were washed 
twice with pre-warmed PBS. A 96-well plate fluorescence 
reader (Anthos Labtech, Salzburg, Austria) was used to 
quantify DCF fluorescence signals. 

TUNEL assay 

Apoptosis was determined by performing TUNEL assay 
according to the manufacturer's protocol. Images of apoptotic 
cells were obtained using an inverted fluorescence micro- 
scope (Carl Zeiss, Jena, Germany) and were analyzed using 
i-Solution software (IMT i-Solution, Vancouver, BC, Canada). 

Wound healing assay 

The cells were plated at equal densities in 6-well plates 
and were grown up to 90~100% confluence. The cell layer 
was scratched using a P-200 pipette tip. After SP treatment, 
the cells were photographed at 0 and 24 h by using an 
inverted microscope equipped with AxioCam software 
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Fig. 1. Effects of SPs on cell viabilities. Equal densities (1 × 104) of human fibroblasts (A) and HeLa cells (B) were incubated in 96-well 
plates containing DMEM supplemented with 1% FBS and 0.1% or 1% SPs for 24 h. Cell viabilities were measured by performing the 
MTT assay (n = 3). P-values (*P < 0.05) were determined using Student's t-test, and the values are expressed as mean ± SEM. 

Fig. 2. SPs increase ROS generation and induce apoptosis in HeLa cells. Human fibroblasts (A) and HeLa cells (B) were plated in 96-well 
plates and were incubated with the indicated concentrations of SPs for 24 h, followed by incubation with 400 μM tert-butyl hydroxide 
(t-BH) for 1 h as a positive control. After incubation, the cells were treated with 5 μM DCF solution for 30 min in a tissue culture incubator, 
and ROS generation was measured using a 96-well fluorescence plate reader (n = 3). ROS generation was quantified in terms of fold increase.
Both the cell lines were plated at the same densities on 2-well chamber slides and were incubated with the indicated concentrations of SPs 
for 24 h (C and D). The TUNEL assay was performed, and the number of apoptotic cells was quantified and expressed as percentages. 
P-values (*P < 0.05, **P < 0.01) were determined using Student's t-test, and the values are expressed as mean ± SEM. 
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(Carl Zeiss) and the gap distance of wound healing was 
measured. 

Statistical analysis 

P-values were calculated using Student's t-test. 
 

RESULTS 

Effects of SPs on the viabilities of HeLa cells and human 
fibroblasts 

To investigate whether SPs had differential effects on the 
viabilities of HeLa cells and human fibroblasts, we deter- 
mined the cytotoxicity of SPs by performing the MTT 
assay (Fig. 1A and B). Both the cell lines were treated with 
0.1% or 1% SPs for 24 h. Treatment with 0.1% SP did not 
exert significant cytotoxic effects on both the cell lines. 
However, treatment with 1% SP significantly decreased the 
viabilities of HeLa cells and fibroblasts (16% and 22%, 
respectively). 

SPs increase ROS generation and induce apoptosis in 
HeLa cells 

We investigated the effects of SPs on ROS generation in 

HeLa cells and fibroblasts. SPs significantly induced ROS 
generation in HeLa cells in a dose-dependent manner (Fig. 
2B) but did not affect ROS generation in fibroblasts (Fig. 
2A). Based on the reported correlation between ROS gener- 
ation and apoptosis (Zhang et al., 2008), we examined the 
apoptosis induced by SP treatment. We observed that SPs 
significantly increased the number of apoptotic cells in 
HeLa cells but not in fibroblasts (Fig. 2C and D), which 
was consistent with the results summarized in Fig. 2B. 

SPs suppress the migration of HeLa cells 

Because SPs induced cell death (Fig. 2D), we investigated 
the effect of SPs on the migration of HeLa cells by per- 
forming a wound healing assay. Treatment with 0.1% SP 
significantly inhibited the wound healing in HeLa cell culture 
(Fig. 3B). However, treatment with 1% SP suppressed the 
migration of both the cell lines (Fig. 3). 

 
DISCUSSION 

 
Several studies have shown that soy, especially isolated 

soy protein, exerts multiple beneficial effects on the human 
body (Tham et al., 1998; Omoni and Aluko, 2005). SPs 

Fig. 3. SPs inhibit the migration of HeLa cells. Cultures of human fibroblasts (A) and HeLa cells (B) were scratched using a P-10 pipette 
tip and were incubated with the indicated concentrations of SPs for 24 h. Images of the wounds were taken at the time of scratching (0 h) 
and after 24 h. The images were then assessed to determine percentage wound healing (n = 3). P-values (NS; not significant, **P < 0.01) 
were determined using student's t-test, and values are expressed as mean ± SEM. 
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induce stem cell proliferation by mediating signal trans- 
duction, including activation of ERK and TGF-β1 pathways 
(Lee et al., 2012). Further, SPs exhibit anticancer activity 
(Saleem, 2009); however, the underlying mechanisms are 
yet to be determined. A recent study reported that soy-
derived isoflavone mixtures induced apoptosis in HeLa cells 
by disrupting mitochondrial membrane potentials (Xiao et 
al., 2011). Although a previous study reported the cytotoxic 
effects of soy-derived compounds on HeLa cells, this study 
did not investigate the cause of cell death. Therefore, we 
examined the anticancer effects of SPs on HeLa cells by 
using human fibroblasts as controls. To determine the cyto- 
toxic effects of SPs on HeLa cells, we conducted cell via- 
bility assays in a dose-dependent manner (Fig. 1). However, 
we did not observe any difference in the cytotoxic effects 
of SPs on both the normal and cancer cell lines. In the 
present study, we used 2 SP doses with a 10-fold difference 
in their concentrations. Therefore, further studies should be 
performed to examine SP doses with smaller differences in 
their concentrations. Because multiple studies have reported 
the antioxidant effect of soy on cancer cells (Jacobsen et al., 
1998; Appelt and Reicks, 1999), we examined the antioxidant 
effect of SPs on HeLa cells by measuring of ROS generation 
(Fig. 2A and B). In contrast to previous studies, we observed 
that SPs significantly increased ROS generation in HeLa 
cells even at a non-cytotoxic concentration (0.1% SP). In 
addition, SPs selectively increased ROS generation in HeLa 
cells in a dose-dependent manner but not in fibroblasts. It is 
interesting that SPs induced ROS generation only in cancer 
cells but not in non-cancer cells under the same experimental 
conditions. As we haven't find the regulatory role of SPs on 
ROS generation in HeLa cells, the molecular mechanism 
of ROS generation by SPs treatment should be determined 
in further studies. Despite the effects of ROS in promoting 
cancer, such as increasing aggressive phenotype (Kumar et 
al., 2008), intrinsic ROS stress (i.e., excessive ROS gener- 
ation) in cancer cells induces apoptosis by releasing cyto- 
chrome c from damaged mitochondrial membranes (Zhang 
et al., 2008). Soy protein induces apoptosis in breast cancer 
cells by generating ROS (Ullah et al., 2011). To verify the 
correlation between ROS generation and cell death, we 
assessed apoptosis induced by SP treatment. Although ROS 

enhance oxidative stress and oxidative DNA damage that 
promote tumorigenesis (Sung et al., 2010), ROS generation 
by SP treatment significantly increased apoptosis in HeLa 
cells in the present study (Fig. 2D). This result might be 
affected by the cytotoxic effects of SPs. However, the non-
toxic dose (0.1%) of SP also induced apoptosis in HeLa 
cells. In contrast, no apoptosis was reported in fibroblasts 
even after treatment with the cytotoxic dose (1%) of SP, 
which decreased the viability of these cells (Fig. 1B). This 
discrepancy might be because of the use of different methods 
to determine cell viability. The TUNEL assay is highly 
selective in detecting apoptotic cells but not necrotic cells 
or cells with DNA strand breaks resulting from drug treat- 
ments (Gold et al., 1994). ROS is a key regulator in cell 
migration (Kim et al., 2012), and ROS generation increases 
cell migration and invasiveness of primary and cancer cells, 
respectively (Schroder et al., 2007; Kumar et al., 2008). 
However, the potential mechanisms involved in ROS-
induced cell death may decrease the migration of cancer 
cells (Pelicano et al., 2004). Therefore, we examined the 
effect of ROS generation on HeLa cells (Fig. 3B). Although 
treatment with 1% SP, which exerted cytotoxic effects on 
both fibroblasts and HeLa cells (Fig. 1), suppressed the 
migration of both the cell lines, treatment with 0.1% SP 
only attenuated the migration of HeLa cells. However, the 
detailed mechanisms underlying this effect should be clarified 
in further studies. Especially, the effect of SPs in inducing 
apoptotic and non-apoptotic cell death should be examined. 
In this study, we observed that SPs increased apoptosis in 
HeLa cells by generating ROS. Although the molecular 
mechanisms underlying this effect of SPs need to be deter- 
mined, our findings may contribute to the understanding of 
the therapeutic effects of soy on human cervical cancer. 
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