• Title/Summary/Keyword: southwestern region

Search Result 150, Processing Time 0.034 seconds

Atmospheric Dispersion of Radioactive Material according to the Local Wind Patterns around the Kori Nuclear Power Plant using WRF/HYSPLIT Model (WRF/HYSPLIT 모델을 이용한 고리원전 인근 국지바람 패턴에 따른 방사성물질 대기확산 특성)

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Bang, Jin-Hee;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.81-96
    • /
    • 2015
  • The characteristics of atmospheric dispersion of radioactive material (i.e. $^{137}Cs$) related to local wind patterns around the Kori nuclear power plant (KNPP) were studied using WRF/HYSPLIT model. The cluster analysis using observed winds from 28 weather stations during a year (2012) was performed in order to obtain representative local wind patterns. The cluster analysis identified eight local wind patterns (P1, P2, P3, P4-1, P4-2, P4-3, P4-4, P4-5) over the KNPP region. P1, P2 and P3 accounted for 14.5%, 27.0% and 14.5%, respectively. Both P1 and P2 are related to westerly/northwesterly synoptic flows in winter and P3 includes the Changma or typhoons days. The simulations of P1, P2 and P3 with high wind velocities and constant wind directions show that $^{137}Cs$ emitted from the KNPP during 0900~1400 LST (Local Standard Time) are dispersed to the east sea, southeast sea and southwestern inland, respectively. On the other hands, 5 sub-category of P4 have various local wind distributions under weak synoptic forcing and accounted for less than 10% of all. While the simulated $^{137}Cs$ for P4-2 is dispersed to southwest inland due to northeasterly flows, $^{137}Cs$ dispersed northward for the other patterns. The simulated average 137Cs concentrations of each local wind pattern are $564.1{\sim}1076.3Bqm^{-3}$. The highest average concentration appeared P4-4 due to dispersion in a narrow zone and weak wind environment. On the other hands, the lowest average concentration appeared P1 and P2 due to rapid dispersion to the sea. The simulated $^{137}Cs$ concentrations and dispersion locations of each local wind pattern are different according to the local wind conditions.

The Relationship between the Fishing Grounds and Oceanographic Condition Associated with Fluctuation of Mackerals Catches in the East China Sea (고등어 어획량 변동에 따른 동지나해의 어장과 해황)

  • Jo, Gyu-Dae;Hong, Cheol-Hun;Kim, Yong-Mun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.83-90
    • /
    • 1984
  • The secular fluctuations of catches and fishing grounds of mackerals and the oceanographic conditions for the fishing grounds are examined by using the data of catches of mackerals by middle and large class purse-seiner during 1951 to 1981 and those of oceanographic observation carried out by Japan Meteorological Agency. The results are as follows; The fishing grounds of mackerals are respectively distributed at northeastern and southwestern areas from the central part of the East China Sea through every season of the studied years: 1968, 1974 and 1980. The narrow belt type of fishing grounds were formed inside of the Kuroshio in spring and winter of the three years. In summer mackeral species move northward and the fishing grounds are formed in the southern sea of Korea. In winter, however, mackeral species move southward and the fishing grounds are appeared in the Tsushima Current region. The dispersion of fishing grounds is generally larger in summer and smaller in spring, and especially it is the largest in summer in 1980. It seems that the concentration and dispersion of fishing grounds are related to the depth of thermocline and the position of horizontal temperature gradient in this area.

  • PDF

Characteristics of the Eggs and Larval Distribution and Transport Process in the Early Life Stage of the Chub Mackerel Scomber japonicus Near Korean Waters (한국 연근해에 분포하는 고등어(Scomber japonicus) 난·자치어의 분포특성 및 초기 수송과정 연구)

  • Kim, So Ra;Kim, Jung Jin;Stockhausen, William T.;Kim, Chang-Sin;Kang, Sukyung;Cha, Hyung Kee;Ji, Hwan-Sung;Jang, Seo-Ha;Baek, Hea Ja
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.666-684
    • /
    • 2019
  • The horizontal distributions of eggs and larvae of chub mackerel Scomber japonicus were extensively surveyed in the vicinity of Korean waters between 31°75'N and 36°50'N during May and June in 2016 and 2017 (total of four surveys). We used a coupled bio-physical model (DisMELS) that combines an individual-based model (IBM) incorporating vertical migration of larvae and temperature-dependent survival to understand transport processes in the early life stage. Using the distributions of eggs and larvae from surveys, the potential spawning grounds were estimated at the northwest and southeast of Jeju Island and the central East China Sea in May, and at the southwestern East Sea and southern West Sea in June by running the model backward in time. In forward experiments within 30 days from the backward results, most larvae were transported to both the Korean and Japanese sides of the East Sea through the Korea Strait. However, the larvae released in the central East China Sea were transported to the Japanese side only, while those released in the southern West Sea were retained within that region. The survival rates at 30 days after release based on the simulation incorporating temperature-dependent survival throughout May and June were 29.7% in 2016 and 28.8% in 2017.

Structural, Paleomagnetic and Petrological Studies of the Chugaryeong Rift Valley (추가령(標哥嶺) 지구대(地構帶)의 지질구조(地質構造), 고지자기(古地磁氣) 및 암석학적(岩石學的) 연구(硏究))

  • Kim, Kyu Han;Kim, Ok Joon;Min, Kyung Duck;Lee, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.215-230
    • /
    • 1984
  • Petrological, paleomagnetic, geomorphological and structural studies on the southern part of, so called, Chugaryeong rift valley, have been carried out in order to clarify the nature of the rift valley. Three stages of volcanic activities characterized by Jijangbong acidic volcanic rocks and tholeiitic and andesitic basalt of Cretaceous age(?), and Jongok Quaternary olivine basalt occurred along the Dongducheon fault line. Jijangbong acidic volcanic rocks distributed in the central part of the studied area consist of rhyodacite, acidic tuff and tuff breccia, which are bounded by Dongsong fault on the east and Daegwangri fault on the west. The Jongok basalt differs from those of Ulrung and Jeju islands in mineralogy, chemical composition and differentiation. Jongok basalt distributed along the Hantan river dilineates the vesicles curved toward downstream direction and increment of numbers and thickness of lava flow toward upstream direction. These facts suggest that lava flowed from upstream side of the river. Rectangular drainage patterns also support the presence of the Dongducheon, Pocheon, Wangsukcheon and Kyonggang faults which were previously known. LANDSAT image, however, does not show any lineaments which could be counted as a graben or rift valley. Displacement of Precambrian quartzite and Jurassic Daedong supergroup along the southwestern extension of the Dongducheon fault shows the right lateral movement. The Paleomagnetic study of the tholeiitic and andesitic basalts from Baegeuri, Jangtanri and Tonghyeonri located at 2. 3km east, 0km east, and 1.5km west of Dongducheon fault respectively shows that their VGP(Virtual Geomagnetic Pole) being to intermediate geomagnetic field of short duration which suggests that they formed in almost same period. Mean VGP of Jongok basalt is located 82.4N and 80.6E. This is in good coincidence with worldwide VGP of Plio-Pleistocene indicating that Jongok basalt was extruded during Plio-Pleistocene epoch, and suggesting that the studied area has been tectonically stable since then. From the present study, the tectonic episode of the region is concluded as following three stages. 1. The 1st period is worked by the Daebo orogeny of Jurassic during which granodiorite was intruded in Precambrian basement. 2. The 2nd period is the time when right lateral strike-slip fault of NNE-SSW direction was formed probably during late Cretaceous to Paleogene and the Jijangbong acidic volcanic rocks and the older basalts were extruded. 3. The 3rd period is the time when the fault was rejuvenated during Pliocene or Pleistocene accompanied by the eruption of Jongok basalt. As a conclusion, geologic structure of the studied area is rather fault line valley than graben or rift valley, which is formed by differential erosion along the Dongducheon fault suggesting a continuation of the Sikhote-Alin fault. The volcanic rocks including the Jijangbong acidic rocks, tholeiitic-andesitic basalt and olivine basalt are associated with this fault line.

  • PDF

Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? (광주전단대 : 영남육괴와 옥천변성대의 지구조적 경계?)

  • Ha, Yeongji;Song, Yong-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • In this study we carried out SHRIMP U-Pb age dating of detrital zircons from age-unknown meta-sedimentary formations distributed around the NNE-SSW trending Gwangju Shear Zone, a branch of Honam Shear Zone, in the southwestern region of the Korean Peninsula. The meta-sedimentary formations from the west (Yeonggwang) and east (Jangseong) areas of the Gwangju Shear Zone have different patterns of zircon age distributions. Zircons of quartzites from the Yeonggwang area yield clusters at Neoarchean (ca. 2,500 Ma), Paleoproterozoic (ca. 1,860 Ma), Neoproterozoic (ca. 960 Ma) and Paleozoic (ca. 380 Ma) ages, but those of the Jangseong area yield clusters at only Neoarchean (ca. 2,500Ma) and Paleoproterozoic (ca. 1,880 Ma) ages. The contrastive patterns in age indicate that the meta-sedimentary formations from the west and east areas correspond to the meta-sedimentary formations of the Okcheon Metamorphic Belt and the sedimentary formations overlying on the Yeongnam Massif, respectively. The results imply that the Gwangju Shear Zone is the tectonic boundary between the Okcheon Metamorphic Belt and the Yeongnam Massif.

Time-Spatial Distribution of Scrub Typhus and Its Environmental Ecology (쯔쯔가무시증의 시.공간적 분포와 환경생태요인)

  • Kong, Woo-Seok;Shin, E-Hyun;Lee, Hee-Il;Hwang, Tae-Sung;Kim, Hyun-Hee;Lee, Nan-Young;Sung, Ji-Hye;Lee, Sle-Gee;Yoon, Kwang-Hee
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.863-878
    • /
    • 2007
  • The time-spatial distribution of Scrub typhus and its relationship with environmental ecology, such as climate, and habitat change are analyzed in respect of the geography of disease. Scrub typhus was firstly reported in 1951, and reemerged in 1986 mainly in southwestern Korea. later it has sharply increased and spreaded out toward whole country in 1998 and 2004, except mid-eastern mountainous region. Hwasung City is the typical example of sudden upsurge of Scrub typhus. High incidence of Scrub typhus patients might due to elevated temperature and decreased precipitation during the summer, as well as milder autumn. Sharp increase of Scrub typhus patients at rural area since 1980's might also be the result of the rapid changes of land use pattern, which eventually have contributed for the active development of dense vegetation and propagation of chigger mites around cultivated land.

Characteristics of Sea Surface Temperature Variation during the High Impact Weather over the Korean Peninsula (한반도에서 위험기상 발생 시 나타나는 해수면온도 변동의 특성)

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.240-258
    • /
    • 2019
  • Typhoons, torrential rainfall, and heavy snowfall cause catastrophic losses each year in the Republic of Korea. Therefore, if we can know the possibility of this phenomenon in advance through regular observations, it will be greatly beneficial to Korean society. Korea is surrounded by sea on its three sides, and the sea surface temperature (SST) directly or indirectly affects the development of typhoons, heavy rainfall, and heavy snowfall. Therefore, the characteristics of SST variability related to the high impact weather are investigated in this paper. The heavy rainfall in Korea was distributed around Seoul, Gyeonggi, and west and southern coast. The heavy snowfall occurred mainly in the eastern coastal (hereafter Youngdong Heavy Snow) and the southwestern region (hereafter Honam-type heavy snow). The SST variability was slightly different depending on the type and major occurrence regions of the high impact weather. When the torrential rain occurred, the SST variability was significantly increased in the regions extending to Jindo-Jeju island-Ieodo-Shanghai in China. When the heavy snow occurred, the SST variability has reduced in the southern sea of Jeju island, regardless of the type of heavy snowfall, whereas the SST variability has increased in the East Sea near $130^{\circ}E$ and $39^{\circ}N$. Areas with high SST variability are anticipated to be used as a basis for studying the atmospheric-oceanic interaction mechanism as well as for determining the background atmospheric aerosol observation area.

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF

Sea Level Variability at a Synoptic Band along the East Coast of Korea and its Causal Mechanism (한국 동해연안의 종관주기 해수면 변동 특성과 발생원인)

  • Jung, Sung-Yun;Yun, Jae-Yul;Park, Tae-Wook;Lim, Se-Han;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.89-105
    • /
    • 2008
  • Sea level and atmospheric pressure data of 1999-2005 from four stations along the Korean east coast were analyzed to understand the sea level variability and its causal mechanism. The results of the wavelet and the auto-spectrum analyses indicate that the sea level fluctuations of 3-17 day period are statistically significant at the 95% confidence level, especially in spring to early summer. In this period, the coherency between the sea levels and the atmospheric pressures in a cross-spectrum is high, implying the importance of an inverted barometric effect in generation of the sea level fluctuations. To learn about the sea level variability, the cross-spectrum analyses were applied between the sea levels of the adjacent stations. The results show a case of southward phase propagations along the coast, as in 1999, 2003 and 2005, and an another case of no progressive phase lags between the stations, as in 2000-2002, and 2004. The phase speed in the former case is 12-15 m/s, which is a commonly observed phase speed of coastal Kelvin waves. Generation of such fluctuations seems to be related to low pressure cells developed in the Asian continent in spring and summer and moving eastward over the coastal region north of the stations. The latter case of no progressive phase lag, however, occurs when the low pressure cells developed in the continent move along the region south of the stations. In this case, the northeastward phase propagation with a speed of 5-8 m/s is observed along the southwestern coast of Japan.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.