• Title/Summary/Keyword: sound control

Search Result 1,193, Processing Time 0.03 seconds

Collocation of Sensor and Actuator for Active Control of Sound and Vibration (능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구)

  • 이영섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.253-263
    • /
    • 2004
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered. but this pair suffers from the in-plane motion coupling problem with the out-of-plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFBcontrol. As a new alternative, a point sensor and distributed piezoelectric actuator pair is also considered, which provides SPR property in all frequency range when the pair is implemented on a clamped-clapmed beam. The use of this sensor-actuator pair is highly expected for the applications to more practical active control of sound and vibration systems with the DVFB control strategy.

Sound Improvement of Violin Playing Robot Applying Auditory Feedback

  • Jo, Wonse;Yura, Jargalbaatar;Kim, Donghan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2378-2387
    • /
    • 2017
  • Violinists learn to make better sounds by hearing and evaluating their own playing though numerous practice. This study proposes a new method of auditory feedback, which mimics this violinists' step and verifies its efficiency using experiments. Making the desired sound quality of a violin is difficult without auditory feedback even though an expert violinist plays. An algorithm for controlling a robot arm of violin playing robot is determined based on correlations with bowing speed, bowing force, and sound point that determine the sound quality of a violin. The bowing speed is estimated by the control command of the robot arm, where the bowing force and the sound point are recognized by using a two-axis load cell and a photo interrupter, respectively. To improve the sound quality of a violin playing robot, the sounds information is obtained by auditory feedback system applied Short Time Fourier Transform (STFT) to the sounds from a violin. This study suggests Gaussian-Harmonic-Quality (GHQ) uses sounds' clarity, accuracy, and harmonic structure in order to decide sound quality, objectively. Through the experiments, the auditory feedback system improved the performance quality by the robot accordingly, changing the bowing speed, bowing force, and sound point and determining the quality of robot sounds by GHQ sound quality evaluation system.

The Development and Application of Sound Quality Index for the Improving Sound Quality to Road Vehicle Power Window System (차량 윈도우 리프트 음질 향상을 위한 음질 지수 제작 및 개선에의 응용)

  • Kim, Seong-Hyeon;Park, Dong-Chul;Jo, Hyeon-Ho;Seong, Won-Chan;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.525-530
    • /
    • 2013
  • With the increasing the importance of emotional quality of vehicle, the sound quality of systems with electric motor components has become increasingly important. Electric motors are used for windows, seats, sun roof, mirrors, steering columns, windshield wiper, climate control blowers, etc. In this paper, a study was conducted to identify sound quality factors that contribute to customer's satisfaction and preference of the window lift system. Jury test for subjective evaluation was carried out and sound quality index was developed. Averaged sound pressure level and sharpness were significant factors when glass moves down. Also, maximum loudness at stop section and averaged loudness were significant factor when glass moves up. Noise source identification was carried out for the reduced the loudness and sharpness during glass transferred section and impulsive noise at stop section, Using the source identification result, several improvement points were applied. And finally, the degree of sound quality improvement was judged using sound quality index.

  • PDF

DSP Implementation of Hysteresis Control for Active Noise Control (능동소음제어를 위한 히스테리시스 제어의 DSP 구현)

  • 이승요;성덕만;최규하;강정유;황희융;장도현
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.93-98
    • /
    • 1996
  • This paper presents active silencer by hysteresis control method using DSP-scheme and shows it audible noise reduction effect. Pentium processor and sound blaster 16 are used for its implementation. The sound blaster 16 executes A/D, D/A conversion and is used operating source of loudspeaker for cancelling.

  • PDF

A Study on Active Control of the Radiated Duct Noise with Insufficient Number of Control Dources and Microphones (덕트 내부의 고차모드 수보다 적은 수의 제어음원과 마이크로폰을 이용한 덕트 방사소음 제어에 관한 연구)

  • 윤두병;김양한;정균양;조대승
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.283-288
    • /
    • 1998
  • If one wants to control the noise from a duct, then one must have sufficient number of sensors and actuators so that the control system is observable and controllable. A number of sensors and actuators for control of radiating noise from a duct have to be incorporated with the number of modes which one wants to control. These considerations motivated the present study that considers a control system which has less microphones and actuators than required. In this work, by theoretical analysis and numerical simulation, the control performance and robust reliability of such a kind of control system is investigated in terms of sound-field variables and control system variables. Then the possibility of implementation of the robust radiation power control system is verified by theoretical analysis and numerical simulation. In addition, the control performance of the control system is verified by experiment.

  • PDF

Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance (능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피)

  • Han, Jong-Ho;Park, Sook-Hee;Noh, Kyung-Wook;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.

Research of real-time image which is responding to the strings sound in art performance (무대 공연에서 현악기 소리에 반응하는 실시간 영상에 관한 연구)

  • Jang, Eun-Sun;Hong, Sung-Dae;Park, Jin-Wan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.185-190
    • /
    • 2009
  • Recent performing-art has a trend to be new cultural contents style which mixes various genre not just traditional way. Especially in stage performance, unique performance is playing using high technology and image. In sound performance, one of technology, a new experiment is trying which re-analyze the sound and mixes the result with image. But in public performance we have a technical difficulty with making visualization regarding the sound in realtime. Because we can not make visualization with instant sound from performers and audience it is difficult to interact smoothly between performer and audience. To resolve this kind of restriction, this paper suggests Real-time sound visualization. And we use string music instrument for sound source. Using the MaxMSP/Jitter based the Midi, we build image control system then we test and control the image with Korg Nano Kontrol. With above experiment we can verify verious emotion, feeling and rhythm of performer according to performance environment and also we can verify the real time interactive image which can be changed momently by performer's action.

  • PDF

Effect of Low Intensity Sound Wave on UC-MSC(Umbilical Cord Mesenchymal Stem Cell Growth (저강도 음파 조사가 중간엽 줄기세포 증식에 미치는 영향)

  • Kim, Sung-Min;Kang, Seung-Ho;Jeong, Jae-Hoon;Park, Jung-Keug;Kim, Soo-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.521-525
    • /
    • 2011
  • It is known that the low-intensity sound stimulation really affect to grow the cell. The cellular growth mechanism, however, does not been clearly identified even the effect on the low-intensity sound stimulation. The purpose of this study is to investigate the effect of low-intensity sound stimulation on the alveolar UC-MSC proliferation. Before the low-intensity sound stimulation is applied, the UC-MSC are cultured for 24 hours to facilitate their attachments. The cells are divided into two groups. And each was exposed to a medium with or without the low-intensity ultrasound stimulation at 71dB intensity level. The UC-MSC are again divided into three treatment groups of group 1, 2, and 3 and exposed to a frequency at 50Hz, 100Hz, and 1000Hz, respectively. In the results, it is investigated that the growth rates of UC-MSC for the stimulated groups were higher than those of control groups. In 1000Hz frequency, the number of UC-MSC cell is significantly higher than control groups (p>0.05). We would put the hypothesis that the cell growth could be enhanced by an appropriate low-intensity sound stimulation.

Evaluation of Sound Quality for Ergonomic Design of Movable Parts in a Refrigerator (냉장고 동작부품의 소음특성 분석을 통한 감성품질 개선)

  • Kang, Seong Yeop;So, Sae Rom;Kim, Gun Ou;Kim, Ji Hoon;Park, Sang Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2018
  • We propose a method for evaluating sound quality quantitatively to develop high-level home appliances (HA). Generally, a refrigerator has diverse movable parts such as slider, drawer, and folding shelf. Therefore, an engineering treatment to control the noise quality is considered as one of key technologies for a higher level refrigerator. Among the movable parts, we have selected a folding shelf as an example, which is commonly setup inside of a home refrigerator for increasing space convenience, to control the noise quality. However, it is known that its noise level is very high comparing to other movable parts when folding or unfolding actions. In order to evaluate and compare the noise quality, we have tested different eighteen models, and have suggested an impact sound quality index (ISQI) based on subjective evaluation data obtained experimentally by thirty two evaluators. The ISQI was formulated using three sound quality elements (noise peak, raising time, impact duration) to determine psycho-acoustic properties. Through this work, we developed an evaluating process and ISQI that was verified the usefulness by comparing the test results of personal perceptions given by evaluators with the prediction value of ISQI. We showed a good relations between them, so we believe that the proposed method and ISQI can be utilized to control of the noise quality of HA effectively.