• Title/Summary/Keyword: sound absorption

Search Result 441, Processing Time 0.024 seconds

A Study on the Safety Test Regulation for the Metallic Sound Barrier of the Absorption Type (금속재 흡음형 방음벽의 안전 시험 규정 분석 연구)

  • Huh, Young
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.5-15
    • /
    • 2002
  • For the noise reduction measures in a construction field where noise sources such as blasting and pile driving works exist, the construction of the sound barrier near the noise source or receiver is often the most economic measure in order to exclude the propagated sound. The dimension of the barrier is decided by the noise and construction design, and the constructive quality of a soundproof panel shall be secured in accordance with KS F4770 to guarantee the safety of sound barriers. In this paper the problems included in the KS F4770-1 that is the regulation for the metallic sound barrier of the absorption type are identified and it is suggested what to be corrected or improved. Through a series of the analyses, conclusion were reached that it is required to improve test methods in KS F4770-1 as well as to break down loads for building more cost-effective sound barrier. In addition, KS F4770-1 was compared with ZTV-Lsw 88 which is the german regulation for sound barrier design. As a result, it was found that the Korean regulation is more conservative than that of Germany.

A Study on Sound Absorption Properties of Foamed Concrete with Continuous Voids (연속공극을 갖는 기포콘크리트의 흡음특성에 관한 연구)

  • 이승한;박정준;황보광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.567-570
    • /
    • 2000
  • This study is designed to manufacture the continuous foamed concrete and the sound absorption characteristics investigation due to continuous voids ratio. According to the results of experiment, it was shown that continuous voids of the foamed concrete has the influence of the amount used of foaming agent, the viscosity and flowability of cement paste, and also is shaped by cohesive power of bubbles. Also the sound absorption ratio of the foamed concrete is subject to increase as the density becomes low by raising the continuous voids ratio. The cement paste with low water-cement ratio and high cement fineness are very effective to prevent weak strength of formed concrete caused by the increase of the porosity.

  • PDF

A Study on the Sound Absorbing Performance of Parallel Perforated Plate Systems (병렬 다공판 시스템의 흡음성능에 관한 연구)

  • Hur, Sung-Chun;Im, Jung-Bin;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.388.2-388
    • /
    • 2002
  • An equivalent electroacoustic circuit approach of estimating the sound absorption coefficient for parallel perforated plate system is proposed. The proposed approach is validated by comparing the calculated absorption coefficients of a parallel single layer perforated plate system with the values measured by the two-microphone impedance tube method for various porosity and cavity depth. (omitted)

  • PDF

Study on the Sound Absorption Properties of Noise Barrier according to the Compositions of Absorptive Material (흡음재 구성방법에 따른 방음벽의 흡음특성에 관한 연구)

  • 김경우;양관섭;강재식;이승언
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1222-1227
    • /
    • 2002
  • Noise barrier is used to reduce traffic noise. The effect of a noise barrier depends not only on the materials, but also on the physical properties such as density, height and degree of absorption, etc. Typical absorptive noise barrier is used sound absorbing material, such as glass wool and mineral wool. The goal of this study is to develope excellent absorptive noise barrier using a polyester. Laboratory measurements were peformed with various thicknesses, density and layer of absorber in a reverberation room.

  • PDF

Acoustical Properties and Absorption Performance of Steel-Wire Fabrics

  • Seo, Seong-Won;Kim, Dong-Woo;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Acoustic performances of the steel-wire fabrics manufactured from the crushed tires were experimentally investigated for various thicknesses and bulk densities. The well- known two-cavity method was used to measure the characteristic impedances, the propagation constants, and the absorption coefficients. The normal absorption coefficients measured by the two-cavity method agreed well with those measured by the two-microphone impedance tube method. The experimental results showed that the magnitude and frequency range of the absorption coefficient were controllable by changing the thickness and the bulk density of the steel-wire fabrics. Therefore, the steel-wire fabrics from the crushed tires can be successfully used as a good sound absorbing material.

Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard (탄화 중밀도섬유판을 이용한 목재흡음판 개발)

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop;Kim, Jong-In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.714-722
    • /
    • 2014
  • In the previous study, a variety of wood-based panels was thermally decomposed to manufacture carbonized boards that had been proved to be high abilities of insect and fungi repellence, corrosion and fire resistant, electronic shielding, and formaldehyde adsorption as well as sound absorption performance. Based on the previous study, carbonized medium density fiberboard (c-MDF) was chosen to improve sound absorption performance by holing and sanding process. Three different types of holes (cross shape, square shape, and line) with three different sanding thickness (1, 2, and 3 mm) were applied on c-MDF and then determined sound absorption coefficient (SAC). The control c-MDF without holes had 14% of SAC, however, those c-MDFs with holes had 16.01% (square shape), 15.68% (cross shape), and 14.25% (line) of SAC. Therefore, making holes on the c-MDF did not significantly affect on the SAC. As the degree of sanding increased, the SAC of c-MDF increased approximately 65% on sanding treated c-MDFs (21.5, 21.83, and 19.37%, respectively) compared to the control c-MDF (13%). Based on these results, composite sound absorbing panel was developed with c-MDF and MDF (11 mm). The noise reduction coefficient of composite sound absorbing panel was 0.45 which was high enough to certify as sound absorbing material.

An Experimental Study on the Absorption Property of Slit Absorbers with Composite Details

  • Jeong, Dae-Up;Joo, Moon-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.81-90
    • /
    • 2002
  • Single absorbing materials and Helmholtz resonators have limited absorption characteristics over limited frequency ranges due to their structures and properties. Porous materials are highly absorptive for mid and high frequency ranges, while they have little sound absorption for low frequency sounds. Helmholtz resonators are generally used to absorb sound energy for a specified frequency range. Hence they have limited capability in controlling the overall acoustic properties of a space. Not much has been known about useful finishing materials which have enough rigidity and absorption over broad frequency range, in spite of wide demands from acoustic designers and consultants. The present work measured and analyzed absorption characteristics of a slit absorber by varying surface materials, depths of air gap, dimensions of slat and slit widths. It was found that the narrower the slit width, the larger the absorptions over the wide frequency ranges and the pattern was dependent on the presence of porous material. Narrower slat's width tend to increase the slit absorber's absorption more or less. Absorption coefficients at low frequency ranges were dramatically improved (from 0.23 to 0.56) by increasing air gap when porous materials were present.

Sound Absorption Capability and Anatomical Features of Oak Mushroom Bed Log (버섯폐골목의 흡음성능과 구조적 특징)

  • Kang, Chunwon;Kang, Wook;Jeong, Insoo;Park, Heejun;Jun, Sunsik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • Sound absorption coefficients of oak (Quercus mongolica) wood and oak mushroom bed log were measured by the two microphone transfer function method and anatomical features of oak mushroom bed log examined by stereo scope and SEM observations. The sound absorption coefficients of oak mushroom bed log seemed to be higher than those of normal oak wood specimen over all estimated frequency range. Especially, in the frequency range of 2 to 6 kHz, they were about 2~3 times higher than those of normal wood specimen. Due to fungi degradation, the specific gravity of oak mushroom bed log decreased about 70% than that of normal wood. For oak mushroom bed log, abundant pores occurred on the radial, tangential and cross sectional surface and it was considered that the pores behaved as a sound absorbing pore.

A Study on the Sound Absolution Properties of Porous Concrete by Recycled Aggregate Contents and Target Void Ratio (재생골재의 혼입률과 목표공극률에 따른 포러스콘크리트의 흡음특성에 관한 연구)

  • Park Seung-Bum;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.541-548
    • /
    • 2004
  • This study peformed an evaluation of the physical and mechanical properties and sound absorption characteristics of porous concrete according to the target void ratio and content of the recycled aggregate in order to reduce the noise generated in roads, railroads, residential areas and downtown areas and effectively utilize the recycled waste concrete aggregate generated as a byproduct of construction. The test results demonstrated that the difference between the target void ratio and the actual measured void ratio was less than 1.7% and that the tendency of the compression strength was to reduce rapidly when the target void ratio and the content of the recycled aggregate exceeded 25% and 50%, respectively. In addition, the sound absorption characteristics of the porous concrete using recycled waste concrete aggregate showed that the NRC was the highest at the target void ratio of 25% and the content of the recycled aggregate had very little influence on the NRC. Therefore, when considering the compression strength and the sound absorption characteristics of porous concrete, the proper target void ratio and the content of the recycled waste concrete aggregate are thought to be 25% and 50%, respectively

Evaluation of Floor Impact Sound Performance according to the installation of Ceiling and Wall (천장 및 벽구성 방법에 따른 바닥충격음 특성평가)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.261-264
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the installation of ceiling and wall. In this test, we measured the reduction of impact sound in the case of inserting absorption materials, increasing of the thickness of air layer and using anti-vibration rubber in ceiling, install of absorption materials in wall. The results of this study show that treatment of ceiling and wall have some reduction of the light weight impact sound and heavy weight impact sound.

  • PDF