• Title/Summary/Keyword: sound absorption

Search Result 441, Processing Time 0.03 seconds

The Study on Sound Absorbing Characteristics of Porous Concrete according to Reverberation Room Methods (랜덤입사방법에 의한 포러스 콘크리트의 흡음특성에 관한 실험적 연구)

  • Seo Dae seuk;Park Seong Bum;Cho Gwang yeon;Jang Young Ill;Kim Hyung Seok;Lee yoon Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.568-571
    • /
    • 2004
  • This research estimated the physical. mechanical characteristic and the character of sound absorption according to target void ratio of porous concrete and the mixing ratio of recycled aggregate for the valid utilization of recycled aggregate using waste concrete and sound reduction out of a road, a railway, a residential street, and a downtown area. As a result of the test, compressive strength tended to be a radical strength fall when target void ratio was $25\%$ and contents of recycled aggregate exceeded over $50\%$. Also, the character of sound absorption of porous concrete which used recycled aggregate using waste concrete was the most excellent when target void ratio was $25\%$, and the influence by contents of recycled aggregate was trivial. Therefore, when the strength and the character of sound absorption of porous concrete are considered, it is proved valid that proper target void ratio was $25\%$ and contents of recycled aggregate using waste concrete was $50\%$ or so.

  • PDF

Design of a Micro-perforated Panel Absorber at High Incident Sound Pressure (높은 입사 음압에서의 미세 천공판을 이용한 흡음 기구의 설계)

  • Park, Soon-Hong;Seo, Sang-Hyun;Jang, Young-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.983-990
    • /
    • 2010
  • Reduction of acoustic loads of space launch vehicles can be achieved by acoustic absorbers satisfying strict cleanness requirements. This limited the use of general porous materials and requires non-porous sound absorbers. Micro-perforated panel absorbers(MPPA) is one of promising sound absorbers satisfying the cleanness requirement for launch vehicles. However, its applicability was limited to low sound pressure levels according to the acoustic impedance model of micro-perforated panels. In this paper the applicability of micro-perforated panel absorbers at high incident sound pressure was investigated in experimental ways. The absorption characteristics of a micro-perforated panel absorber was simulated according to its design variables, e.g., minute hole diameters and aperture ratios. It was shown that optimal design can be readily done by using proposed design charts. Experiments were conducted to measure acoustic properties of the designed micro-perforated panel absorbers. The results showed that acoustic resistance increases rapidly as incident sound pressure level does but change of acoustic reactance can be neglected in a practical point of view. This caused the decrease of peak value of absorption coefficient at high incident sound pressure level, but the amount of reduction can be accepted in practice. The major advantage of the micro-perforated panel absorber(wide absorption bandwidth) was still kept at high sound pressure level.

The Effect of Sound Reinforcement Systems on the Acoustics of a Large-Span Spaces (대공간에서 전기음향 시스템에 따른 음향특성 변화)

  • Jeong, Dae-up;Joo, Hyun-kyung;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The present work investigate the effect of sound reinforcement systems on the acoustics of a large dome stadium using a computer simulation. The acoustics of a dome stadium was predicted analyzed by varying room absorption, as well as the configuration of speakers including their directivity, installed height, and numbers. It was found that both D50 and RASTI were improved by increasing room absorption. Larger EDTs were observed according to the increase of room absorption at mid and high frequencies. On the other hand, RT did not show any significant correlation with the changes in room absorption, which might be the effect of a forced linear fitting for non -linear energy decay process. With respect to the speaker configuration, the speech intelligibility of a sound reforcement system installed at higher placed more relied upon their directivity rather than room absorption, Also, lower placing of speakers was found to be effective in decreasing RTs regardless of room absorption.

Experimental study for characteristics of diffuse sound field formed by sound source directivity (음원의 지향성이 확산음장 형성에 미치는 영향에 관한 실험연구)

  • Shin, Il-Seop;Cha, Kwang-Seok;Cho, Chang-Geun;Lee, Dae-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1002-1006
    • /
    • 2000
  • It is diffuse sound field that measuring condition of absorption ratio and sound transmission loss for material consist of building are measured in reverberartion room and on-site. In this study, for upkeeping diffuse sound field in reverberation room, it is measured and etimated that sound field is effected according to sound source lacation and characteristics of emission directivity for sound source.

  • PDF

The Study on Improvement of Acoustic Performance for Automobile Sound-absorbing Materials Using Hollow Fiber (중공 섬유를 이용한 자동차 흡음재 성능 향상 연구)

  • Lee, Jung-Wook;Lee, Su-Nam;Shim, Jae-Hyun;Jung, Pan-Ki;Lee, Won-Ku;Bang, Byoung-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.850-857
    • /
    • 2011
  • Generally, sound-absorbing materials in vehicles are used for giving the comfort to passengers by reducing noise while driving. Materials of which targets are light weight, high performance, eco friendliness and recycling have been developed recently. In this study, sound-absorbing materials using PET(polyethylene terephthalate) hollow fibers to achieve the light weight and the high sound absorption performance are developed, and then evaluated to meet a requirement for the automotive components. The test results show that the acoustic performances of developed products having new fiber structure are better than those of the conventional product.

A Study on the Sound Characteristic of Insulation and Manufacturing of Lightweight Concrete for Wall System (벽체용 경량 콘크리트의 제조 및 흡차음 특성에 관한 연구)

  • Kim, Hong-Yong;Kim, Soon-Ho
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • This paper deals with the experimental for manufacturing the lightweight buildng materials with portland cement, fly ash, slag, lime, gypsum, and aluminum powder system. Aluminum powder was added an aerating agent. Specific gravity range of lightweight concrete specimens were 0.6~0.9g/cm3. These specimens properties studied by means of specific gravity, compressive strength, absorption coefficient, transmission loss and scanning electron microscopy. Cellular concrete with maximum compressive strength was 41kgf/cm2 by obtained Al=0.05wt.%. Moreover, the aeration lightweight concrete showed excellent sound absorption properties.

Investigation and Analysis of Regulations for the Safety of the Noise Barrier (방음벽 안전을 위한 기준 조사 및 분석)

  • Huh, Young;Kim, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.730-734
    • /
    • 2003
  • For the noise reduction measures in a construction field or near the traffic line receiver is often the most economic measure in order to exclude the propagated sound. The dimension of the barrier is decided by the noise and construction design, and the constructive quality of a soundproof panel shall be secured in accordance with KS F4770 to guarantee the safety of sound barriers. In this paper the problems included in the KS F4770-1 that is the regulation for the metallic sound barrier of the absorption type are identified and it is suggested what to be corrected or improved. Through a series of the analyses, conclusions were reached that it is required to improve test methods in KS F4770-1 as well as to break down test loads for building more cost-effective sound barrier.

A New Method for Measuring Characteristic Impedance and Propagation Constant of Sound-Absorbing Materials (흡음재의 특성임피던스와 전파상수의 새로운 결정방법)

  • 황철호;정성수;은희준
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.781-787
    • /
    • 1997
  • A new method is presented to determine two fundamental acoustic quantities of sound-absorbing materials such as characteristic impedance and propagation constant. In this study, the surface acoustic impedances of sound-absorbing materials are measured using the impedance tube and the anechoic chamber to determine the above acoustic quantities. The measured results are given for two typical sound-absorbing materials(glass wool and urethane foam) int the frequency range between 150 and 1, 600 Hz. The results are verified by other two known methods, which are Smith & Parrott method and Utsuno et al. method. The absorption coefficients calculated from the empirical models(Miki model for glass wool and Jung model for urethane foam) and two quantities by present method are in good agreement with the measured values.

  • PDF

An Experimental Study on the Sound Insulation Performance for Light-weight Concrete Panel (경량콘크리트 패널의 차음성능에 관한 실험적 연구)

  • Chung, J.Y.;Lee, S.H.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.457-460
    • /
    • 2004
  • This study examines the sound insulation of the light-weight wall using light-weight concrete and offers the basic datum for enhancing it. The sound insulation of the light-weight wall is determinated by the density, installation method, absorption materials, air layers etc. Among the factors, the solution of outlet that is the major cause of reducing sound insulation should be made. If absorption materials are installed in the cavity walls, it enhances to 15dB in 500Hz.

  • PDF

Preliminary study on absorption characteristic of a human body according to the amount of clothing worn for developing standard test dummy (표준더미 개발을 위한 착의량에 따른 인체의 흡음특성 기초연구)

  • Kim, Yong-Hee;Lee, Sung-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.254-260
    • /
    • 2017
  • The purpose of this study is to evaluate the sound absorption characteristics of a human body according to the amount of clothing worn by using reverberation method measurement method for developing standard test dummy, which can be used for testing absorption of occupied audience chair. Test method was based on the previous study (Conti et al., 2004), each experiment is conducted in the reverberation room and a subject wearing clothes is standing in that chamber. In this experiment, the sound absorption area of each frequency band according to the wearing of various material clothing was measured. As a result of measurements, the average sound absorption area of the whole frequency band was $0.25m^2-0.48m^2$ in case of a subject not wearing outer clothes, and $0.38m^2-0.98m^2$ in case of wearing of outerwear. Polyester tops by showing the maximum value, the highest characteristics in the 800 Hz to 1 kHz band among the rest of fiber materials. The outer jacket made of the wool and cotton materials show a higher absorption area as the frequency increases to the higher frequency band. The change of the sound absorption area according to the clothing amount was divided by the thermal resistance (clo) of the worn clothes and the weight per body surface area.