• Title/Summary/Keyword: solvent annealing

Search Result 71, Processing Time 0.035 seconds

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors

  • Kim, Chaewon;Jo, Anjae;Kim, Heeju;Kim, Miso;Lee, Jaegab;Lee, Mi Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Benzothienobenzothiophene ($C_8-BTBT$) is a soluble organic small molecule material with high crystallinity resulting from its strong self-organizing properties. In addition, the high mobility and easy fabrication of $C_8-BTBT$ make it very attractive in terms of organic thin-film transistors. In this work, we made $C_8-BTBT$ thin films by using the zone-casting method; we also used an organic solvent to treat the devices with solvent vapor annealing to improve the electrical properties. As a result, we confirmed improved mobility, threshold voltage, and subthreshold swing after solvent vapor annealing. To prove the effect of solvent vapor annealing, we used the simultaneous extraction model to extract the contact resistance from the current-voltage curve. We confirmed that the electrical properties improved with decreasing contact resistance.

Effect of Solvent Annealing on the Characteristics of PEDOT:PSS as a Ammonia Gas Sensor Film (용매열처리에 따른 PEDOT:PSS 암모니아 가스 감지막 특성 변화)

  • Noh, Wang Gyu;Yeom, Se-Hyuk;Lee, Wanghoon;Shin, Han Jae;Kye, Ji Won;Kwak, Giseop;Kim, Se Hyun;Ryu, Si Ok;Han, Dong Cheul
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively studied as the active material in ammonia gas sensor because of its fast response time, high conductivity and environmental stability. It is well known that a post annealing process for organic devices based on PEDOT:PSS significantly increases the device performance. In this study, we propose the solvent annealing of PEDOT:PSS and investigated its effects. As a results, post solvent annealing on PEDOT:PSS lead to the surface chemical and physical properties change. These changes result in improved conductivity of the PEDOT:PSS. In additional, ammonia sensitivity of solvent annealed PEDOT:PSS become higher than pristine polymer film. The enhancement is mainly caused by the depletion of gas barrier PSS and structural re-forming PEDOT networks. We believe that the post solvent annealing is a promising method to achieve highly sensitivity PEDOT:PSS films for applications in efficient, low-cost and flexible ammonia gas sensor.

The effect of annealing temperature and solvent on the fabrication of YBCO thin films by MOD-TFA process (MOD-TFA 공정으로 YBCO 박막제조 시 열처리 온도와 용매의 영향)

  • 허순영;유재무;김영국;고재웅;이동철
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.84-87
    • /
    • 2003
  • $YBa_2$$Cu_3$$O_{7-x}$ (YBCO) thin films were fabricated by MOD-TFA process via dip-coating method on LaAlO$_3$, (LAO) single crystalline substrates. In this study, we investigated effect of annealing temperature and solvent on the microstructure and texture of YBCO thin films. The precursor films were annealed at various temperature to improve surface morphologies and phase purities. It was shown that the films annealed at relatively lower and higher temperature exhibit low phase purity and crystallinity. The effect of various solvents on surface morphologies and second phase has been investigated.

  • PDF

Room-temperature crystallized organic solar cells without post-treatment

  • Yu, Dae-Seong;Gang, Yong-Jin;Im, Gyeong-A;Jeong, Seong-Hun;Kim, Jong-Guk;Kim, Do-Geun;Gang, Jae-Uk;Kim, Chang-Su;Kim, Ju-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.108-109
    • /
    • 2011
  • 유기태양전지를 제작 시에 요구되는 것 중 하나는 active layer의 thermal annealing이다. Thermal thermal annealing 없이는 P3HT의 self-organization이 잘 이뤄지지 않아 비정질의 모습을 보인다. 또한 low band-gap이나 열에 취약한 물질을 사용 시에 태양전지 효율이 낮아지게 된다. 이 점을 착안하여 Active layer에 사용되는 유기용매의 solvent vapor pressure 차이를 이용하여 co-solvent가 되도록 mixing하여, co-solvent로 poly(3-hexylthiopene)(P3HT):[6,6] - phenyl $C_{61}$-butyric acid methyl ester (PCBM)를 blending 하여 active layer로 사용하였으며, 유기태양전지 디바이스 제작 결과 thermal thermal annealing 없이 2.8%까지 도달하였다. X-Ray Diffraction(XRD)과 Atomic Force Microscopy(AFM)를 통하여 P3HT의 결정화가 이루어 졌음을 확인하고 이를 통해 active layer의 thermal annealing이 없이도 P3HT의 self-organization이 이뤄짐을 알 수 있었다.

  • PDF

Nanostructure and Thermal Effects Dependent on the Film Thickness in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester(P3HT:PCBM) Films Fabricated by 1,2-Dichlorobenzene Solvent for Organic Photovoltaics (1,2-Dichlorobenzene Solvent를 이용한 고분자 유기태양전지에서 박막 두께에 따른 나노 구조와 열처리 효과)

  • Lee, Hyun Hwi;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • Film thickness dependent nanostructure evolution by a post annealing was investigated in poly (3-hexylthiophene):phenyl-C61-butyric acid methyl ester(P3HT:PCBM) films for organic solar cells which were fabricated by dichlorobenzene(DCB) solvent. In case of a 70nm thin film, the thermal annealing process affected to slight increment of the P3HT crystals in the surface region. On the other hand, large number of small sized P3HT crystals near the surface region was formed in the 200nm thick film. The solar cell devices showed the 3% power conversion efficiency(PCE) in 1:0.65 and 1:1 ratio(by weight) of P3HT and PCBM in 70nm and 200nm thickness conditions, respectively. Despite to the similar PCE, the short circuit current Jsc was different in 70nm and 200nm devices, which was related to the different nanostructure of P3HT:PCBM after thermal annealing.

Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell

  • Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.595-600
    • /
    • 2020
  • The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 ℃, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.

Morphological Transitions of Symmetric Polystyrene-block-Poly(1,4-butadiene) Copolymers in Thin Films upon Solvent-Annealing (용매 어닐링에 의한 박막에서 Polystyrene-Poly(1,4-butadiene) 블록공중합체의 모폴로지 전이)

  • Lee, Dong-Eun;Kim, Eung-Gun;Lee, Dong-Hyun
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.542-548
    • /
    • 2012
  • Morphological characteristics and formation of symmetric polystyrene-block-poly(1,4-butadiene) copolymer (PS-b-PBD) in thin films upon solvent-annealing were investigated by using atomic force microscopy (AFM). The thin films solvent-annealed in cyclohexane revealed the perforated lamellae of poly(1,4-butadiene) in the matrix of polystyrene while those solvent-annealed in n-hexane exhibited highly disordered patterns. Interestingly, when the thin films of PS-b-PBD were solvent-annealed with binary mixtures of cyclohexane and n-hexane, the morphological transition from the perforated lameallae to the perpendicularly-oriented lamellae of poly(1,4-butadiene) could be induced by changing the mixing ratio of both solvents. We also demonstrated that after microdomians of poly(1,4-butadiene) were successfully degraded by UV-$O_3$, linear poly(dimethyl siloxane) chains were back-filled into the etched regions of the thin film and then converted to silica nano-objects by oxygen plasma treatments.

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.