DOI QR코드

DOI QR Code

Morphological Transitions of Symmetric Polystyrene-block-Poly(1,4-butadiene) Copolymers in Thin Films upon Solvent-Annealing

용매 어닐링에 의한 박막에서 Polystyrene-Poly(1,4-butadiene) 블록공중합체의 모폴로지 전이

  • Lee, Dong-Eun (Department of Polymer Science and Engineering, Dankook University) ;
  • Kim, Eung-Gun (Department of Polymer Science and Engineering, Dankook University) ;
  • Lee, Dong-Hyun (Department of Polymer Science and Engineering, Dankook University)
  • 이동은 (단국대학교 고분자시스템공학과) ;
  • 김응건 (단국대학교 고분자시스템공학과) ;
  • 이동현 (단국대학교 고분자시스템공학과)
  • Received : 2012.05.02
  • Accepted : 2012.05.29
  • Published : 2012.07.25

Abstract

Morphological characteristics and formation of symmetric polystyrene-block-poly(1,4-butadiene) copolymer (PS-b-PBD) in thin films upon solvent-annealing were investigated by using atomic force microscopy (AFM). The thin films solvent-annealed in cyclohexane revealed the perforated lamellae of poly(1,4-butadiene) in the matrix of polystyrene while those solvent-annealed in n-hexane exhibited highly disordered patterns. Interestingly, when the thin films of PS-b-PBD were solvent-annealed with binary mixtures of cyclohexane and n-hexane, the morphological transition from the perforated lameallae to the perpendicularly-oriented lamellae of poly(1,4-butadiene) could be induced by changing the mixing ratio of both solvents. We also demonstrated that after microdomians of poly(1,4-butadiene) were successfully degraded by UV-$O_3$, linear poly(dimethyl siloxane) chains were back-filled into the etched regions of the thin film and then converted to silica nano-objects by oxygen plasma treatments.

본 연구에서는 용매 증기 하에서 박막으로 제조된 polystyrene-poly(1,4-butadiene) 블록공중합체(PS-b-PBD)의 모폴로지 형성과 특성이 원자주사현미경(AFM)을 사용하여 연구되었다. 사이클로헥산으로만 용매 어닐링된 박막의 경우 폴리스티렌의 매트릭스 내부에 PBD가 미세상을 형성하는 perforated lamellae가 형성되었지만, n-헥산만으로 용매 어닐링 된 박막은 불규칙한 패턴만이 관측되었다. 그러나 사이클로헥산과 n-헥산의 혼합 용매를 사용하여 용매 어닐링할 경우 기질에 수직으로 배향된 라멜라가 관측되었다. 이러한 모폴로지 전이는 혼합 용매의 혼합비에 의해 조절되며 n-헥산의 양이 증가하면서 라멜라의 형성이 뚜렷이 관측되었다. 그러나 용매 어닐링에 사용된 혼합 용매 중 n-헥산의 주요 성분이 될 경우 n-헥산의 PBD로의 용매 친화력에 의해 모폴로지 형성이 오히려 지연되는 것을 확인하였다. 이러한 사이클로헥산과 n-헥산의 혼합비에 따른 모폴로지 전이는 블록공중합체에 대한 두 용매들의 친화력과 관련 있으며, 이를 이해하기 위해 이들의 용해도 상수 및 Flory 상호인력 인자들이 고려되었다. 또한 본 연구로부터 얻어진 두 가지 모폴로지를 이용하여 실리카 나노 패턴의 제조를 위한 템플레이트로 활용하였다.

Keywords

Acknowledgement

Supported by : Dankook University

References

  1. I. W. Hamley, The Physics of Block Copolymers, Oxford Science Publications, New York, 1998.
  2. L. Leibler, Macromolecules, 13, 1602 (1980). https://doi.org/10.1021/ma60078a047
  3. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem., 41, 525 (1990). https://doi.org/10.1146/annurev.pc.41.100190.002521
  4. A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, Phys. Rev. Lett., 89, 0355011 (2002).
  5. P. Mansky, Y. Liu, E. Huang, T. P. Russell, and C. J. Hawker, Science, 275, 1458 (1997). https://doi.org/10.1126/science.275.5305.1458
  6. C. J. Hawker and T. P. Russell, MRS Bull., 30, 952 (2005). https://doi.org/10.1557/mrs2005.249
  7. C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, and K. J. Hawker, Science, 322, 429 (2008). https://doi.org/10.1126/science.1162950
  8. S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, Science, 323, 1030 (2009). https://doi.org/10.1126/science.1168108
  9. W. Lee, H. Han, A. Lotnyk, M. A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, and U. Gosele, Nat. Nanotechnol., 3, 402 (2008). https://doi.org/10.1038/nnano.2008.161
  10. J. Y. Cheng, C. A. Ross, C. Z.-H. Chan, E. L. Thomas, R. G. H. Lammertink, and G. J. Vancso, Adv. Mater., 13, 1174 (2001). https://doi.org/10.1002/1521-4095(200108)13:15<1174::AID-ADMA1174>3.0.CO;2-Q
  11. T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science, 290, 2126 (2000). https://doi.org/10.1126/science.290.5499.2126
  12. D. H. Lee, S. Park, W. Gu, and T. P. Russell, ACS Nano, 5, 1207 (2011). https://doi.org/10.1021/nn102832c
  13. H. Cho, S. Choi, J. Y. Kim, and S. Park, Nanoscale, 3, 5007 (2011). https://doi.org/10.1039/c1nr11075f
  14. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, Adv. Mater., 13, 421 (2001). https://doi.org/10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-#
  15. I. In, Y. H. La, S. M. Park, P. F. Nealey, and P. Gopalan, Langmuir, 22, 7855 (2006). https://doi.org/10.1021/la060748g
  16. T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, and T. P. Russell, Science, 16, 931 (1996).
  17. T. Thurn-Albrecht, J. DeRouchey, T. P. Russell, and H. M. Jaeger, Macromolecules, 33, 3250 (2000). https://doi.org/10.1021/ma991896z
  18. G. Kim and M. Libera, Macromolecules, 31, 2569 (1998). https://doi.org/10.1021/ma971349i
  19. K. Fukunanga, H. Elbs, R. Magerle, and G. Krausch, Macromolecules, 33, 947 (2000). https://doi.org/10.1021/ma9910639
  20. S. Niu and R. F. Saraf, Macromolecules, 36, 2428 (2003). https://doi.org/10.1021/ma0212792
  21. Q. Zhang, O. K. C. Tsui, B. Du, F. Zhang, T. Tang, and T. He, Macromolecules, 33, 9561 (2000). https://doi.org/10.1021/ma001161q
  22. H. Huang, F. Zhang, Z. Hu, B. Du, T. He, F. K. Lee, Y. Wang, and O. K. C. Tsui, Macromolecules, 36, 4084 (2003). https://doi.org/10.1021/ma0217581
  23. S. Park, J. Wang, B. Kim, W. Chen, and T. P. Russell, Macromolecules, 40, 9059 (2007). https://doi.org/10.1021/ma071321z
  24. S. O. Kim, H. H. Solak, M. P. Stoykovich, M. J. Ferrier, J. J. de Pablo, and P. F. Nealey, Nature, 424, 411 (2003). https://doi.org/10.1038/nature01775
  25. R. A. Segalman, H. Yokoyama, and E. J. Kramer, Adv. Mater., 13, 1152 (2001). https://doi.org/10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5
  26. C. De Rosa, C. Park, E. L. Thomas, and B. Lotz, Nature, 405, 433 (2000). https://doi.org/10.1038/35013018
  27. S. H. Kim, M. J. Misner, and T. P. Russell, Adv. Mater., 16, 2119 (2004). https://doi.org/10.1002/adma.200306577
  28. K. A. Cavicchi and T. P. Russell, Macromolecules, 40, 1181 (2007). https://doi.org/10.1021/ma061163w
  29. A. Knoll, R. Magerle, and G. Krausch, Macromolecules, 34, 4159 (2001). https://doi.org/10.1021/ma001311x
  30. H. Huang, Z. Hu, Y. Chen, F. Zhang, Y. Gong, and T. He, Macromolecules, 37, 6523 (2004). https://doi.org/10.1021/ma0498621
  31. L. H. Lee, J. Polym. Sci., 5, 1103 (1967). https://doi.org/10.1002/pol.1967.110051212
  32. E. A. Grulke, "VII Solution Properties", in Polymer Handbook, J. Brandrup and E. H. Immergut, Editors, John Wiley & Son, New York, p 176 (1989).
  33. M. G. Buonomenna, G. Golemme, C. M. Tone, M. P. De Santo, F. Ciuchi, and E. Perrotta, Adv. Funct. Mater., 22, 1759 (2012). https://doi.org/10.1002/adfm.201101904
  34. A. Turturrot, E. Gattiglia, P. Vacca, and G. T. Viola, Polymer, 36, 3987 (1995). https://doi.org/10.1016/0032-3861(95)90977-A
  35. Y. S. Jung, J. B. Chang, E. Verploegen, K. K. Berggren, and C. A. Ross, Nano Lett., 10, 1000 (2010). https://doi.org/10.1021/nl904141r