• Title/Summary/Keyword: solvent activity

Search Result 1,474, Processing Time 0.026 seconds

Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes (기장(Panicum miliaceum)의 마우스 3T3-L1 세포에 대한 에폽토시스 유발 및 지방세포형성 억제 효능)

  • Jun, Do Youn;Lee, Ji Young;Han, Cho Rong;Kim, Kwan-Pil;Seo, Myung Chul;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.505-514
    • /
    • 2014
  • To examine the anti-obese activity of miscellaneous cereal grains, 80% ethanol extracts from eight selected miscellaneous cereal grains were compared for their cytotoxic effects on 3T3-L1 murine preadipocytes. The ethanol extract of proso millet exhibited the highest cytotoxicity. Further fractionation of the ethanol extract with methylene chloride, ethyl acetate, and n-butanol showed that the cytotoxicity of the ethanol extract was mainly partitioned into the butanol fraction. As compared with differentiated mature adipocytes, 3T3-L1 preadipocytes were more susceptible to the cyctotoxicity of the butanol fraction. When each organic solvent fraction (25 ${\mu}g/ml$) was added during the differentiation period for 6 days, the cell viability was not affected significantly except for the butanol fraction, but the intracellular lipid accumulation declined to a level of 81.5%~50.3% of the control. The Oil Red O staining data also demonstrated that the ethanol extract as well as the butanol fraction could inhibit the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The presence of the butanol extract during the induced adipocytic differentiation also resulted in a significant reduction in the expression levels of critical adipogenesis mediators $(C/EBP{\alpha}$, $PPAR{\gamma}$, aP2, and LPL) to a barely detectable or undetectable level and the cells retained the fibroblast-like morphology of 3T3-L1. In 3T3-L1 cells, the cytotoxicity of the butanol fraction (50-100 ${\mu}g/ml$) was accompanied by mitochondrial membrane potential (${\Delta}{\psi}m$) loss, caspase-3 activation, and PARP degradation. Taken together, these results indicate that proso millet grains possess pro-apoptotic and anti-adipocytic activities toward adipocytes, which can be applicable to prevention of obesity.

Changes in Cordycepin and Liquiritigenin Content and Inhibitory Effect on NO Production in Fermented Licorice and Dongchunghacho (동충하초균주로 발효한 감초의 주요성분 함량 변화 및 NO 생성 억제 효과)

  • Wang, Ziyu;Li, Mei;Li, Ke;Son, Beung Gu;Kang, Jum Soon;Park, Young Hoon;Lee, Yong Jae;Kim, Sun Tae;Jung, Jae-Chul;Lee, Young Guen;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Traditional Korean fermented herbal plants are potential sources of new food that promote health, but they are still produced by yeast, fungi or bacteria fermentation. In the present work, mushroom (Paecilomyces tenuipes and Cordyceps militaris) fungal dongchunghacho were used to fermented Glycyrrhiza uralensis Fischer (licorice) or mixed with pupa. The pupa were tested as solid substrates for the production of corcycepin, liquiritin, and liquiritigenin. The fermented substrates were analyzed the content of cordycepin, liquiritin, liquiritigenin, and glycirrhizin productivity and inhibitory activity of NO. The cordycepin content of 70% EtOH extract from the fermented mixture of licorice and 50% pupa with C. militaris increased maximum at 33 times. Pupa was very excellent for the production of cordycepin. The liquiritin content was decreased in all the assays inoculated with P. tenuipes and C. militaris dongchunghachos. The liquiritigenin content was higher when fermented with P. tenuipes than C. militaris. The addition of pupa significantly reduced the liquiritin content and glycyrrhizin production. As a result, the liquiritigenin content increased in fermented P. tenuipes and C. militaris, and liquiritin and glycyrrhizin decreased. The inhibition of NO production in the different ethanolic extracts fermented with licorice and pupa was also significantly increased and higher than that of a nonfermented extract in higher polar solvent extracts. The contents of cordycepin and biological active compounds were altered in accordance with the concentration of pupa and fungi. This study provides basic data for use in developing dongchunghacho fungi as a functional food resource.

Review of the study on the surfactant-induced foliar uptake of pesticide (계면활성제에 의해 유도되는 농약의 엽면 침투성 연구 현황)

  • Yu, Ju-Hyun;Cho, Kwang-Yun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2002
  • Research trends in the measurement of foliar uptake of pesticides and the recently proposed action mechanism of the surfactant-induced uptake of pesticides were reviewed with the related reports and studies. Major techniques used in those fields are bioassay, radiotracer techniques with leaves or cuticular membrane. Recently, a new method using Congo Red as a tracer was proposed. The limiting factor in the pesticides uptake into leaves is the waxy layer which consists of the epicuticular and cuticular wax. Physico-chemical parameters such as molar volume, water solubility and partition coefficient of pesticides have limited influences on the pesticide uptake into leaves. Polydisperse ethoxylated fatty alcohol surfactants are well known as the good activator for many pesticides. It is now generally agreed that uptake activation is not related to the intrinsic surface active properties of surfactants such as surface activity, solvent property, humectancy and critical micelle concentration. Recent studies using ESR-spectroscopy revealed that the surfactants have an unspecific plasticising effect on the molecular structure of the wax and cuticular matrix, leading to increased mobilities of pesticides. Penetration of surfactants into waxy layer altered the pesticide mobility in wax and the partition coefficient of pesticide, and then the pesticides penetration into leaves was enhanced temporally. The enhancing effect of surfactant could be significantly different depending on the carbon number of aliphatic moiety and the number of ethoxy group in polyoxyethylene chain of surfactants. It is suggested that the rate of penetration of surfactants should have a significant relationship with the rate of penetration of pesticides.

Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I (염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I))

  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.105-114
    • /
    • 2007
  • The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.

Fate of the herbicide bensulfuron-methyl in a soil/rice plant microecosystem (벼 재배 microecosystem 내에서 제초제 bensulfuron-methyl의 행적)

  • Lee, Jae-Koo;Fuhr, F.;Kwon, Jeong-Wook;Ahn, Ki-Chang;Park, Ju-Hyoung;Lee, Yong-Pil
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In order to elucidate the behavior of bensulfuron-methyl, a sulfonylurea herbicide, in a soil/plant microecosystem, rice plants (Oryza sativa L.) were grown for 12 weeks in the specially made stainless steel pots (17cm I.D. $\times$ 10cm H.) containing two different paddy soils treated with fresh and 13-week-aged residues of [phenyl-$^{14}C$]bensulfuron-methyl, respectively. During the aging period, the mineralization to $^{14}CO_2$ from soil A (OM, 3.59%; CEC, 7.65 $cmol^+\;kg^{-1}$; texture, sandy clay loam) and B (OM, 1.62%; CEC, 4.51 $cmol^+\;kg^{-1}$; texture, sandy loam) amounted to 6.79 and 10.15% of the originally applied $[^{14}C]$bensulfuron-methyl, respectively. The amounts of $^{14}CO_2$ evolved from the soils with fresh residues were higher than those from the soils with aged residues. At harvest after 12-week growing, $^{14}C$-radioactivity absorbed and translocated into rice plants from soils A and B containing fresh residues of bensulfuron-methyl was 1.53 and 4.40%, while 4.04 and 6.37% in the two soils containing aged residues, respectively. Irrespective of aging and soil type, the $^{14}C$-radioactivity remaining in soil ranged from 80.41 to 98.87% of the originally applied $[^{14}C]$bensulfuron-methyl. The solvent extractability of tile soils was $39.25\sim70.39%$, showing the big differences among the treatments. Most of the nonextractable soil-bound residues of $[^{14}C]$bensulfuron-methyl were incorporated into the fulvic acid fraction$(61.32\sim76.45%)$. Comparing the microbial activity of the soils with rice plants grown with that of the soils without them, the former was $1.6\sim3.0$ times higher than the latter. However, it did not correlate with the $^{14}CO_2$ evolution.

The Antioxidant and Antitumor Effects of the Extract of Bulnesia sarmientia (Bulnesia sarmienti 추출물의 항산화 및 항암효과)

  • Jo, Dae-Hyoun;Min, Kyung-Jin;Cha, Chun-Geun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.2
    • /
    • pp.120-126
    • /
    • 2007
  • Present study have been performed to develop Bulnesia sarmienti as a functional food. Methanol, n-hexane, chloroform, ethyl acetate and butanol extracts of Bulnesia sarmienti contained total phenol by 5.81 to 7.47%. It is high content than fruits which were known as high contests of total phenol. The electron donating ability of the extract of Bulnesia sarmienti were increased along with increasing concentrations of extracts. At $500{\mu}g/mL\;and\;1000{\mu}g/mL$, the all extracts showde more than 80% of scavenging abilities, which means the equal effect of the antioxidant, BHT. Nitrite scavenging abilities were measured as follows: methanol, butanol, 5.53, 5.77% at $100{\mu}g/mL$, respectively. The ethyl acetate extract was 73.29% at $1000{\mu}g/mL$ which showed the highest activity and methanol, butanol, n-hexane, chloroform and water extract were 65.65, 65.02, 47.49, 52.51, 45.54% which also showed relatively high activities. The growth inhibitory effects of each solvent extract on tumor cell were as follows: test against SUN-1, the gastric carcinoma cell, exhibited the highest inhibitory effects at $100{\mu}g/mL$ where the n-hexane extract was 61.6%. The ethyl acetate and water extracts did not revealed any inhibitory effects. Hela, the uterine carcinoma cell, exhibited the highest inhibitory effects at $100{\mu}g/mL$ where the n-hexane extract was 75.1%. The water extracts did not revealed any inhibitory effects. HT-29, the colon carcinoma cell, also exhibited the highest inhibitory effects at $100{\mu}g/mL$ where n-hexane extract was 57.4%. In conclusion, Bulnesia sarmienti have been shown the antioxidant and antitumor effects, and that it is expected to be developed as functional foods.

Effects of Onion Flesh and Peel on Chemical Components, Antioxidant and Anticancer Activities (양파 육질 및 껍질의 화학성분과 항산화 및 항암 활성 비교)

  • Jang, Joo-Ri;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1598-1604
    • /
    • 2009
  • In order to determine chemical components of onion flesh and peel, general nutrients, vitamin C, and total flavonoids were measured. Onion peel showed less moisture (14.3%) and no vitamin C compared to onion flesh. Onion peel contained more amounts of total flavonoids compared to onion flesh. In addition, the inhibitory effects of solvent extracts from onion flesh and peel on $H_2O_$-induced oxidative stress and growth of cancer cell lines (AGS human gastric adenocarcinoma and HT-29 human colon cancer cells) were investigated. Acetone with methylene chloride (A+M) and methanol (MeOH) extracts from onion flesh and peel appeared to significantly reduce the levels of intracellular reactive oxygen species (ROS) (p<0.05) and a greater antioxidant effect was observed in onion peel. Among fractions, 85% aq. methanol showed a higher protective activity against oxidative stress in both flesh and peel and there was no effect in the water and hexane fractions. The growth of cancer cells exposed to medium containing extracts and fractions from onion flesh and peel was inhibited dose-dependently. The growth of AGS was inhibited more in both flesh and peel compared to HT-29, and onion peel was more effective than onion flesh. Among fractions, 85% aq. methanol showed the greatest effect on growth inhibition in both flesh and peel. $IC_{50}$ values of 85% aq. methanol fraction from onion flesh and peel on AGS were 0.04 and 0.03 mg/ml, respectively, while those on HT-29 were 0.23 and 0.04 mg/ml. From our results, 85% aq. methanol fraction had an inhibitory effect against oxidative stress and growth of cancer cells, suggesting that it may contain biological active compounds.

Anti-aging Effects of the Extracts from Leaf. Stem, Fruit and Seed of Yew (Taxus cuspidata Sieb) by Solvent Extraction Method (용매추출법에 의한 주목의 잎, 줄기, 과실 추출물의 항 노화 효과)

  • Kim, In-Young;Jung, Sung-Won;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.211-219
    • /
    • 2004
  • Yew (Taxus cuspidata Sieb.) chose that grow as medicine, food, decorative plant in Korea's Kyong-Gi province surroundings. Extracts of yew extracted leaf of 250g and stems of 300g with 1,3-butylene glycol (l,3-BG), propylene glycol (PG) and water. As results, external appearance of leaf extract of yew was slightly brown clear extract. The pH was 5.3${\pm}$0.5, and specific gravity was 1.012${\pm}$0.05, and refractive index was l.375${\pm}$0.05. Also, appearance of stem's extract was slightly brown clear extract, and the pH was 5.4${\pm}$0.5, and specific gravity was 1.016${\pm}$0.05, and refractive index was 1.358${\pm}$0.05. Oil of yew separated from seeds, and extracted polysaccharide high purity from fruits. As a result, specific gravity of oil was 0.987, and obtained 40.0% of yield. Total polyphenols amount of yew extract is detected 0.563% in leaves, 0.325% in stems, whereas total tannins amount contained 0.054% and 0.037% each in leaves and stems. As effect in cosmetics, the anti-oxidative effect by DPPH method is 75.0% in leaves, and stems was 64.0%. Collagen synthesis rate was shown high activity by 54.16% in stem's extract, 33.18% in leaves' extract. Also, PPE-inhibitory activities were 13.7% and 23.5% each in leaves and stems. Anti-inflammatory effect of yew seed oil displayed superior effect of 41% than control. Polysaccharide's molecular weight that is gotten from fruits was 5${\times}$10$^4$-3${\times}$10$\^$5/ dalton, and got 20.0${\pm}$5% of yield.

Screening of Biologically Active Compound from Edible Plant Sources-IX. Isolation and Identification of Sesquiterpene Lactons Isolated from the Root of Ixeris dentata forma albiflora; Inhibition Effects on ACAT, DGAT and FPTase Activity (식용식물자원으로부터 활성물질의 탐색-IX. 흰씀바귀(Ixeris dentata forma albiflora)뿌리에서 Sesquiterpene Lactone 화합물의 분리 및 구조 동정; ACAT, DGAT 및 FPTase 효소 활성의 저해)

  • Bang, Myun-Ho;Jang, Tae-O;Song, Myoung-Chong;Kim, Dong-Hyun;Kwon, Byoung-Mog;Kim, Young-Kuk;Lee, Hyun-Sun;Chung, In-Sik;Kim, Dae-Keun;Kim, Sung-Hoon;Park, Mi-Hyun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.251-257
    • /
    • 2004
  • The root of lxeris dentata forma albiflora was extracted with 80% aqueous MeOH and solvent fractionated with EtOAc, n-BuOH and water, successively. From the EtOAc and n-BuOH fractions, four sesquiterpene compounds were isolated through the repeated silica gel and ODS column chromatographies. The chemical structures were determined as zaluzanin C (1), $9{\alpha}-hydroxyguaian-4(l5),10(14),11(13)-triene-6,12-olide$ (2), $3{\beta}-O-{\beta}-D-glucopyranosyl-8{\alpha}-hydroxyguaian-4(15),10(14 )-diene-6,12-olide$ (3), and $3{\beta}-O-{\beta}- D-glucopyranosyl-8{\beta}hydroxyguaian-10(14)-ene-6,12-olide$ (4) through the interpretation of several spectral data including 2D-NMR. Some showed the inhibitory effects on DGAT (Diacylglycerol acyltransferase), ($IC_{50}$ values of 1, 2: 0.13, 0.10 mM), the catalyzing enzymes of the intracellular esterification of diacylglycerol and FPTase (Famesyl-protein transferase), ($IC_{50}$ values of 1, 2: 0.15, 0.18 mM), the farnesylation enzyme for Ras protein charge of cancer promotion.

Antioxidant and Anti-inflammatory Effects of Ficus erecta var. sieboldii Leaf Extract in Murine Macrophage RAW 264.7 Cells (좁은잎천선과나무(Ficus erecta var. sieboldii) 잎 추출물이 대식세포 RAW 264.7 세포에서 미치는 항산화 및 항염증 효과)

  • Jung, Yong-Hwan;Ham, Young-Min;Yoon, Seon-A;Oh, Dae-Ju;Kim, Chang-Suk;Yoon, Weon-Jong
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.303-311
    • /
    • 2018
  • In this study, a preliminary evaluation of the antioxidant and anti-inflammatory activity of the Ficus erecta var. sieboldii (Miq.) King (FES) leaf extract has been performed to assess its potential as a natural resource for food and medicinal materials. FES was extracted using 70% EtOH and then fractionated sequentially using n-hexane, $CH_2Cl_2$, EtOAc, and n-BuOH. To screen for antioxidant and anti-inflammatory agents effectively, the inhibitory effect of the FES extracts on the production of oxidant stresses (DPPH, xanthine oxidase, and superoxide) and pro-inflammatory factors (NO, iNOS, COX-2, $PGE_2$, IL-6, and $IL-1{\beta}$) in the murine macrophage cell line RAW 264.7 activated with lipopolysaccharide (LPS) was examined. Among the sequential solvent fractions of FES, the $CH_2Cl_2$ and EtOAc fractions showed decreased production of oxidant stresses (DPPH, xanthine oxidase and superoxide), and the hexane and $CH_2Cl_2$ fractions of FES inhibited the production of pro-inflammatory factors (NO, iNOS, COX-2, and $PGE_2$). The $CH_2Cl_2$ fraction also inhibited the production of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$). These results suggest that FES has a significant effects on the production of oxidant stresses and pro-inflammatory factors and may be used a natural resource for antioxidant and anti-inflammatory agents.