Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.1.57

Changes in Cordycepin and Liquiritigenin Content and Inhibitory Effect on NO Production in Fermented Licorice and Dongchunghacho  

Wang, Ziyu (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Li, Mei (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Li, Ke (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Son, Beung Gu (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Kang, Jum Soon (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Park, Young Hoon (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Lee, Yong Jae (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Kim, Sun Tae (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University)
Jung, Jae-Chul (NOVAREX Co., Ltd.)
Lee, Young Guen (Department of Food Science and Technology, College of Natural Resources and Life Science, Pusan National University)
Choi, Young Whan (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
Publication Information
Journal of Life Science / v.27, no.1, 2017 , pp. 57-66 More about this Journal
Abstract
Traditional Korean fermented herbal plants are potential sources of new food that promote health, but they are still produced by yeast, fungi or bacteria fermentation. In the present work, mushroom (Paecilomyces tenuipes and Cordyceps militaris) fungal dongchunghacho were used to fermented Glycyrrhiza uralensis Fischer (licorice) or mixed with pupa. The pupa were tested as solid substrates for the production of corcycepin, liquiritin, and liquiritigenin. The fermented substrates were analyzed the content of cordycepin, liquiritin, liquiritigenin, and glycirrhizin productivity and inhibitory activity of NO. The cordycepin content of 70% EtOH extract from the fermented mixture of licorice and 50% pupa with C. militaris increased maximum at 33 times. Pupa was very excellent for the production of cordycepin. The liquiritin content was decreased in all the assays inoculated with P. tenuipes and C. militaris dongchunghachos. The liquiritigenin content was higher when fermented with P. tenuipes than C. militaris. The addition of pupa significantly reduced the liquiritin content and glycyrrhizin production. As a result, the liquiritigenin content increased in fermented P. tenuipes and C. militaris, and liquiritin and glycyrrhizin decreased. The inhibition of NO production in the different ethanolic extracts fermented with licorice and pupa was also significantly increased and higher than that of a nonfermented extract in higher polar solvent extracts. The contents of cordycepin and biological active compounds were altered in accordance with the concentration of pupa and fungi. This study provides basic data for use in developing dongchunghacho fungi as a functional food resource.
Keywords
Cordycepin; Cordyceps militaris; NO production; pupa; solid-state fermentation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Nakamura, K., Shinozuka, K. and Yoshikawa, N. 2015. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J. Pharmacol. Sci. 127, 53-56.   DOI
2 Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Naim, H. Y., Williamson, G., Swallow, D. M. and Kroon, P. A. 2003. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in human. Eur. J. Nutr. 42, 29-42.   DOI
3 Nishino, H., Yoshioka, K., Iwashima, A., Takiziwa, H., Konoshi, S., Okamoto, H., Okabe, H., Shibata, S., Fujiki. H. and Sugimura, T. 1986. Glycyrrhetic acid inhibits tumorpromoting activity of teleocidin and 12-O-tetradecanoylphorbol-13-actate in two- stage mouse skin carcinogenesis. J. Cancer Res. 77, 8-33.
4 Park, E. Y., Park, J. S., Lee, J. R., Jee, S. Y. Byun, S. H. and Kim, S. C. 2007. Cytoprotective effects of liquiritigenin, a component of licorice, against lead-induced cytotoxicity in PC-12 cells. Kor. J. Herbology 22, 17-24.
5 Park, J. S., Park, S. H., Oh, I. S., Chang, Y. N., Bang, K. S., Byeon, E. J. and Lee, J. H. 2013. A comparative study of physiological activity of Glycyrrhiza uralensis Fischer stems and leaves by processing methods. Kor. J. Plant Res. 26, 539-547.   DOI
6 Pompei, R., Flore, O., Marcialis, M. A. and Loddo, B. 1979. Glycyrrhizic acid inhibits virus growth and activates virus particles. Nature 281, 689-690.   DOI
7 Ahn, H. Y., Park, K. R., Yoon, K. H., Lee, J. Y. and Cho, Y. S. 2016. Biological activity and chemical characteristics of Cordyceps militaris powder fermented by several microscopic organisms. J. Life Sci. 25, 197-205.
8 Alessandra, M., Antonella, D. L., Isabella, D. L., Cesare, P. and Mario, D. R. 2002. Enzymatic production of 18-${\beta}$-glycyrrhetinic acid from Glycyrrhiza glabra L. Biotech. Let. 24, 1907-1911.   DOI
9 Asl, M. N. and Hosseinzadeh, H. 2008. Review of pharmacological effects of Glycyrrhiza sp, and its bioactive compounds. Phytother. Res. 22, 709-724.   DOI
10 Chang, S. T., Chen, P. F. and Chang, S. C. 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmacol. 77, 123-127.   DOI
11 Hatano, T., Kagawa, H., Yasuhara, T. and Okuda, T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36, 2090-2097.   DOI
12 Sim, H. K., Hoang, S. W., Baek, B. S. and Bae, M. J. 1996. Effect of Glycyrrhiza glabrs extracts on Immune response. Life Res. Indus. 1, 5-13.
13 Shon, M. Y. 2007. Antioxidant and anticancer activities of Poria cocos and Machilus thunbergii fermented with mycelial mushrooms. Food Indus. Nutr. 12, 51-57.
14 Cho, H. J., Cho, J. Y., Rhee, M. H., Kim, H. S., Lee, H. S. and Park, H. J. 2007. Inhibitory effects of cordycepin (3'-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. J. Microbiol. Biotechnol. 17, 1134-1138.
15 Choi, H. J., Lee, W. J., Park, S. H., Song, B. W., Kim, D. H. and Kim, N. J. 2005. Studies on the processing of crude drugs (IX) - Preparing standardization and regulation of stir-frying Glycyrrhziae root (1). Kor. J. Pharmacogn. 36, 209-219.
16 Chung, W. T., Lee, S. H., Cha, M. S., Sung, N. S., Hwang, B. and Lee, H. Y. 2001. Biological activities in roots of Glycyrrhiza uralensis Fisch. Kor. J. Med. Crop Sci. 9, 45-54.
17 Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949.
18 Fenwick, G., Lutomski, J. and Nieman, C. 1990. Liquorice Glycyrrhiza glabra L.-Composition uses and analysis. Food Chem. 38, 119-143.   DOI
19 Jo, S. J., Lee, T. H., Chae, D. H. and Han, Y. H. 2004. Optimization of culture and media composition on the production of cordycepin by Cordyceps militaris. Kor. J. Microbiol. 40, 217-220.
20 Kim, S. C., Byun, S. H., Yang, C. H., Kim, C. Y., Kim, J. W. and Kim, S. G. 2004. Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage). Toxicology 197, 239-251.   DOI
21 Um, Y. R., Shim, K. S., Lee, J. H., Park, H. Y. and Ma, J. Y. 2009. Quantitative analysis of glycyrrhizic acid in fermented Glycyrrhizae radix by HPLC. Kor. J. Orient. Med. 15, 85-89.
22 Sohn, E. J., Kang, D. G., Lee, A. S., Lee, Y. M., Yin, M. H., Yeum, K. B. Noh, S. Y. and Lee, H. S. 2003. Antioxidant activities of glycyrrhizin and its effect on renal expression of Na, K-ATPase in gentamicin-induced acute renal failure rats. J. Physiol. Pathol. Kor. Med. 17, 542-548.
23 Suhr, S. S. and Jung, S. K. 2009. Antiviral effects of fermented Lonicerae flos on A type influenza virus. Kor. J. Orient. Int. Med. 30, 465-480.
24 Tsukahara, M., Shinzato, N., Tamaki, Y., Namihira, T. and Matsui, T. 2009. Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production. Appl. Biochem. Biotechnol. 158, 476-482.   DOI
25 Zheng, Y. F., Wei, J. H., Fang, S. Q., Tang, Y. P., Cheng, H. B., Wang, T. L., Li, C. Y. and Peng, G. P. 2015. Hepatoprotective triterpene saponins from the roots of Glycyrrhiza inflata. Molecules 20, 6273-6283.   DOI
26 Zhu, J. S., Halpern, G. M. and Jones, K. 1998. The scientific rediscovery of an ancient Chinese herbal medicine, Cordyceps sinensis Part I. J. Altern. Complement Med. 4, 289-303.   DOI
27 Kumagai, A., Nanabosh, M., Asanuma, Y., Yagur, T. and Nishino, K. 1967. Effect of glycyrrhizin on thymolytic and immuno-suppressive action of cortisone. Endocrinol. Jpn. 14, 39-42.   DOI
28 Kim, S. I., Kim, J. E., So, J. H., Rhee, I. K., Chung, S. K., Lee, K. B., Yoo, Y. C. and Song, K. S. 2004. Changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Kor. J. Pharmacogn. 35, 309-314.
29 Kiso, Y., Tohin, M., Ino, H., Hattori, M., Saamoto, T. and Namba, T. 1984. Mechanism of antihepatotoxin activity of glycyrrhizin. Effect on free radical generation and lipid peroxidation. Planta Medica. 50, 298-302.   DOI
30 Ko, B. S., Lu, Y. J., Yao, W. L., Liu, T. A., Tzean, S. S., Shen, T. L. and Liou, J. Y. 2013. Cordycepin regulates GSK-$3{\beta}$/${\beta}$-catenin signaling in human leukemia cells. PLOS ONE 8, e76320.   DOI
31 Lee, J. W., Ji, Y. J., Yu, M. H., Bo, M. H., Seo, H. J., Lee, S. P. and Lee, I. S. 2009. Antimicrobial effect and resistant regulation of Glycyrrhiza uralensis on methicillin-resistant Staphylococcus aureus. Nat. Prod. Res. 23, 101-111.   DOI
32 Liang, Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241.   DOI
33 Muller, W. E., Weiler, B. E., Charubala, R., Pfleiderer, W., Leserman, L., Sobol, R. W., Suhadolnik, R. J. and Schroder, H. C. 1991. Cordycepin analogues of 2',5'-oligo-adenylate inhibition of reverse transcriptase. Biochemistry 30, 2027-2033.   DOI
34 Na, I. S., Park, M. J., Noh, C. H., Min, J. W., Bang, M. H. and Yang, D. C. 2008. Production of flavonoid aglycone from Korean Glycyrrhizae Radix by biofermentation process. Kor. J. Orient. Physiol. Pathol. 22, 569-574.