• Title/Summary/Keyword: solution polymerization

Search Result 484, Processing Time 0.036 seconds

Anionic Polymerization of 2-Pyrrolidone by $SO_2/KOH$ Catalyst ($SO_2/KOH$ 촉매에 의한 2-Pyrrolidone의 음이온 중합에 관한 연구)

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.14 no.4
    • /
    • pp.231-252
    • /
    • 1979
  • Polymerization of 2-pyrrolidone was carried out through anionic mechanism using $SO_2/KOH$ as catalyst. The effects of KOH concentration, $SO_2/KOH$ mole ratio and temperature on polymerization were investigated. The conversion and viscosity of polymers were measured at various polymerization conditions. It was observed that as the concentration of KOH was increased, equilibrium conversion was also increased. It was, however, found that after the concentration of KOH was reached above 8 mole percent, the equilibrium conversion was decreased. The highest rate of polymerization and maximum conversion were obtained when $SO_2/KOH$ mole ratio was around 0.5. It was also found that the rate of polymerization and the equilibrium conversion were higher at $50^{\circ}C$. than at $30^{\circ}C$. but the viscosity of polymer solution at $50^{\circ}C$. was not so high as expected. The rate constant, $K_p$ of polymerization, was determined by least square method: the value of $K_p$ was observed as 16 liter/mole hour at $50^{\circ}C$. and 2.6 liter/mole hour at $30^{\circ}C$., respectively. The mechanism of polymerization was also discussed.

  • PDF

UV-Induced Graft Polymerization of Polypropylene-g-glycidyl methacrylate Membrane in the Vapor Phase

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.495-500
    • /
    • 2003
  • UV-induced graft polymerization of glycidyl methacrylate (GMA) to a polypropylene (PP) membrane was carried out in the vapor phase with benzophenone (BP) as a photoinitiator. Attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to characterize the copolymer. The degree of grafting increased with increasing reaction time, increased UV irradiation source intensity, and increased immersion concentration of the BP solution. The optimum synthetic condition for the PP-g-GMA membrane was obtained with a reaction time of 2 hrs, a UV irradiation source intensity of 450 W, and an immersion concentration of the BP solution of 0.5 mol/L. The pure water flux decreased upon increasing the degree of grafting and increasing the amount of diethylamino functional group introduced. The analysis of AFM and SEM images shows that the graft chains and diethylamino groups of PP-g-GMA grew on the PP membrane surface, resulting in a change in surface morphology.

Synthesis of arsenic adsorbent using graft polymerization

  • SEKO Noriaki;TAMADA Hasao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • Fibrous arsenic (As) adsorbent was synthesized by loading zirconium (Zr) on fibrous phosphoric adsorbent that was directly synthesized by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid on polyethylene-coated polypropylene nonwoven fabric. Zirconium reacted with phosphoric acid grafted in the polyethylene layer. Zirconium density of the resulting adsorbent was 4.1 mmol/g. The breakthrough curve of As(V) adsorption was independent of the flow rate up to $1300\;h^{-1}$ in space velocity. The total capacity of As(V) was 2.0 mmol/g-adsorbent at pH of 2. The adsorbed Zr(IV) could be evaluated by 0.4 M sodium hydroxide solution because negligible Zr(IV) could be found in the eluted solution.

  • PDF

Electrically Conductive nylon 6 fabric prepared by in situ Polymerizationof Polyaniline (폴리아닐린의 in situ 중합에 의한 전도성 나일론 직물의 제조)

  • 홍경화;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.2
    • /
    • pp.326-334
    • /
    • 1999
  • Polyaniline(PAn)-nylon 6 composite fabrics were prepared by immersing the nylon 6 fabrics in 100% distilled aniline for specified diffusion time and drawn out. Then the excess aniline on the fabric surface was blotted and successive polymerization was initiate by immersing them into oxidant and dopant solution for in situ polymerization of polyaniline. Consequently highly conductive PAn-nylon 6 composite fabrics could be obtained and the conductivity reaches as high as 10-2 S/cm. The maximum conductivity was obtained when the fabric was immersed in 100% aniline at 4$0^{\circ}C$ for 3hours and polymerization was proceeded in 0.25M ammonium peroxydisulfate solution at 5$^{\circ}C$ for 1hour.

  • PDF

Stability and Electrochemical Characteristics of Polyaniline Salt Films in 1 N HCl Solution

  • 조정환;오응주;요철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.715-719
    • /
    • 1996
  • Thin films of polyaniline (PANI) salts were in situ deposited on a Pt plate during either chemical polymerization or electrochemical polymerization. The oxidation states of the salt films were controlled by the applied DC potential. AC impedance of the Pt/PANI electrode were measured in monomer-free 1 N HCl solution in order to investigate the electrodic properties of the films at the following applied DC potentials: 0, 0.45 and 0.75 V vs. SCE. Very small differences in film conductivity according to its oxidation state were observed by analysis of the impedance spectra, the reasons of which are complicated by enriched water content in the film and possible decrease in the film thickness during the measurements. The electrochemical activity of the film/solution interface varied with its oxidation state. Stability of the film in 1 N HCl solution was also evaluated by impedance and cyclic voltammetry measurements.

Reaction Condition Dependency of Propagating Behavior in the Polymerization Reaction by Thermal Front

  • Huh, Do-Sung;Choe, Sang-Joon;Lee, Burm-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.325-329
    • /
    • 2002
  • In this study, the dependency of the behavior of propagating front on the reaction condition in frontal polymerization reaction has been studied. We have used some multifunctional acrylates as a monomer and ammonium persulfate as an initiator for the polymerization reactions. In frontal polymerization, a method of producing polymeric materials via a thermal front that propagates through the unreacted monomer/initiator solution, the behavior of self propagating front shows various dynamic patterns depending on the reaction condition. We have obtained some spin modes of propagating front in the number of 'hot spots' or 'spin heads' by changing the reaction condition. The effect of the reactor tube diameter on the mode of propagating front has also been studied by using some reactor tubes with different size of tube diameter and it has been examined in some detail by adopting an experimental method of two-tubes system.

Atom Transfer Radical Polymerization of Hexadecyl Acrylate Using CuSCN as the Catalyst

  • Xu, Wenjian;Zhu, Xiulin;Cheng, Zhenping;Chen, Jianying;Lu, Jianmei
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • The atom transfer radical polymerization (ATRP) of hexadecyl acrylate (HDA) was carried out in Ν,Ν-dimethylformamide (DMF) in the presence of CuSCN/Ν,Ν,Ν′,Ν"Ν"-pentamethyldiethylenetriamine (PMDETA). The results indicate that the polymerization is well-controlled: a linear increase of molecular weights occurs with respect to conversion and the polydispersities are relatively low. In particular, the use of CuSCN as the catalyst resulted in faster polymerization rates for hexadecyl acrylate than did those using either CuBr or CuCl; the polydis-persity, however, was larger than those obtained in the cases when CuBr and CuCl were used. In addition, we report the thermodynamic data and activation parameters for the solution ATRP of hexadecyl acrylate.

Polymerization of aniline using a peroxidase-mimetic catalyst

  • Kim, Min-Chul;Lim, Youngjoon;Lee, Sang-Yup
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.364-371
    • /
    • 2018
  • Enzyme polymerization is a benign process exploiting the unique activity of enzymes. In this study, a peroxidase-mimetic catalyst is demonstrated as an alternative to horseradish peroxidase (HRP) for the polymerization of aniline. The mimetic catalyst successfully catalyzes the polymerization of aniline monomers to produce polyaniline (PANI) in an aqueous solution. The PANI produced is rich of para-structure that is generally observed when HRP is used as a catalyst. Compared to HRP, the peroxidase-mimetic catalyst shows a considerably higher catalytic activity at neutral and weak basic conditions (pH >6.5) and at temperatures over $45^{\circ}C$, at which HRP is denatured.

Synthesis, Reactions and Catalytic Activities of Water Soluble Rhodium and Iridium-Sulfonated Triphenylphosphine Complexes. 1. Polymerization of Terminal Alkynes

  • 주광석;김상열;진종식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1296-1301
    • /
    • 1997
  • Polymerization of terminal alkynes (phenlacetylene and 4-ethynyltoluene) catalyzed by water soluble rhodium (Ⅰ) complex, RhCl(CO)(TPPTS)2 (TPPTS=m-P(C6H4SO3Na)3) (1) selectively produces cis-transoid polymers at room temperature in homogeneous solution of H2O and MeOH as well as in biphasic solutions of H2O and CHCl3. The rate of polymerization is higher in H2O/MeOH than in H2O/CHCl3. The iridium analog, IrCl(CO)(TPPTS)2 (2) shows catalytic activity for the polymerization of phenylacetylene only at elevated temperature to give trans-polymers. The polymerization rate increases significantly when the trimethylamine N-oxide (Me3NO) was added to the reaction mixtures. The electronic absorption spectra of the cis-transoid polymers show three absorption bands whereas the trasn-polymers show only one absorption band. It seems that the electronic absorption bands depend on the configuration of the polymers.

On-Chip Fabrication of PDA Sensor Fiber Using Laser Polymerization and 3-D Hydrodynamic Focusing (3-D 유체집속효과와 레이저 중합반응을 이용한 PDA 센서 미세섬유 제작)

  • Yoo, Im-Sung;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2692-2695
    • /
    • 2008
  • Polydiacetylene (PDA) is chemosensor materials that exhibit non-fluorescent-to-fluorescent transition as well as blue-to-red visible color change upon chemical or thermal stress. They have been studied in forms of film or microarray chip, so far. In this paper, we provide a novel technique to fabricate continuous micro-fiber PDA sensor using in-situ laser-polymerization technique and 3-D hydrodynamic focusing on a microfluidic chip. The flow of a monomer solution with diacetylene (DA) monomer is focused by a sheath flow on a 3-D microfluidic chip. The focused flow is exposed to 365 nm UV laser beam for in-situ polymerization which generates a continuous fiber containing DA monomers. Then, the fiber is exposed to 254 nm UV light to polymerize DA monomers to PDA. Preliminary results indicate that the fiber size can be controlled by the flow rates of the monomer solution and sheath flows and that a PDA sensor fiber successively responds to chemical and thermal stress.

  • PDF