UV-Induced Graft Polymerization of Polypropylene-g-glycidyl methacrylate Membrane in the Vapor Phase

  • Hwang, Taek-Sung (Department of Chemical Engineering, Chungnam National University) ;
  • Park, Jin-Won (Department of Chemical Engineering, Chungnam National University)
  • Published : 2003.12.01

Abstract

UV-induced graft polymerization of glycidyl methacrylate (GMA) to a polypropylene (PP) membrane was carried out in the vapor phase with benzophenone (BP) as a photoinitiator. Attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to characterize the copolymer. The degree of grafting increased with increasing reaction time, increased UV irradiation source intensity, and increased immersion concentration of the BP solution. The optimum synthetic condition for the PP-g-GMA membrane was obtained with a reaction time of 2 hrs, a UV irradiation source intensity of 450 W, and an immersion concentration of the BP solution of 0.5 mol/L. The pure water flux decreased upon increasing the degree of grafting and increasing the amount of diethylamino functional group introduced. The analysis of AFM and SEM images shows that the graft chains and diethylamino groups of PP-g-GMA grew on the PP membrane surface, resulting in a change in surface morphology.

Keywords

References

  1. Radiat. Phys. Chem. v.57 S.H.Choi;Y.C.Nho https://doi.org/10.1016/S0969-806X(99)00348-5
  2. Radiat. Phys. Chem. v.57 M.Kim;K.Saito https://doi.org/10.1016/S0969-806X(99)00314-X
  3. J. Korea Fib. Soc. v.30 T.I.Chun;S.C.Choi;S.Y.No
  4. J. Membr. Sci. v.136 M.Ulricht;H.H.Schwarz https://doi.org/10.1016/S0376-7388(97)00151-8
  5. Appl. Surf. Sci. v.108 B.Ivanov;C.Popov;M.Lekova;D.Yankova;G.Peev https://doi.org/10.1016/S0169-4332(96)00596-X
  6. Polymer(Korea) v.1 I.W.Cho;J.B.Kim
  7. Polymer v.40 F.Severini;M.Pegoraro;L.Yuan;G.Ricca;N.Fanti https://doi.org/10.1016/S0032-3861(99)00113-5
  8. Macromol. Res. v.10 P.H.Kang;J.S.Park;Y.C.Nho https://doi.org/10.1007/BF03218327
  9. Prog. Polym. Sci. v.28 K.Kato;E.Uchida;E.T.Kang;Y.Uyama;Y.Ikada https://doi.org/10.1016/S0079-6700(02)00032-1
  10. Marcomol. Res. v.11 R.S.Hwang;J.W.Park
  11. Tribol. Int. v.36 M.Z.Rong;M.Q.Zhang;G.Shi;Q.L.Ji;B.Wetzel;K.Friendrich https://doi.org/10.1016/S0301-679X(03)00029-X
  12. Radiat. Phys. Chem. v.42 Z.Xu;H.Gao;M.Qian;Y.Yu;G.Wan;B.Chen https://doi.org/10.1016/0969-806X(93)90413-O
  13. Radiat. Phys. Chem. v.59 T.Kawai;K.Saito;K.Sugita;T.Kawakami;J.Kanno;A.Katakai;N.Seko;T.Sugo https://doi.org/10.1016/S0969-806X(00)00298-X
  14. Sensor Actuat. B-Chem. v.82 M.D.Hsiech;E.T.Zellers https://doi.org/10.1016/S0925-4005(01)01011-5
  15. AIChE J. v.42 K.Uezu;K.Saito;T.Sugo;S.Aramaki https://doi.org/10.1002/aic.690420420
  16. J. Chromatogr. A v.952 R.Ghosh https://doi.org/10.1016/S0021-9673(02)00057-2
  17. J. Chromatogr. A v.718 N.Kubota;M.Kounosu;K.Saito;K.Sugita;K.Watanabe;T.Sugo https://doi.org/10.1016/0021-9673(95)00641-9
  18. J. Membr. Sci. v.194 T.Yamaguchi;T.Suzuki;T.Kai;S.I.Nakao https://doi.org/10.1016/S0376-7388(01)00545-2
  19. J. Bembr. Sci. v.174 S.Sawamoto;H.Ohya;K.Yanase;S.Semenova;M.Aihara;T.Takeuchi;Y.Negishi
  20. J. Membr. Sci. v.179 A.Wendal;H.Yanagishita;D.Kitamoto;A.Endo;K.Haraya;T.Nakane;N.Hanai;N.Koura;H.Kamusewitz;D.Paul https://doi.org/10.1016/S0376-7388(00)00502-0
  21. J. Membr. Sci. v.133 A.Nabe;E.Staude;G.Belfort https://doi.org/10.1016/S0376-7388(97)00073-2
  22. Radiat. Phys. Chem. v.60 S.H.Choi;Y.H.Jeong;J.J.Ryoo;K.P.Lee
  23. J. Membr. Sci. v.115 M.Ulbricht;H.Matuschewski;A.Oechel;H.G.Hicke
  24. J. Membr. Sci. v.209 V.Freger;J.Gilron;SBelfer https://doi.org/10.1016/S0376-7388(02)00356-3