• Title/Summary/Keyword: solution polymerization

Search Result 484, Processing Time 0.022 seconds

Effects of Methacrylamide Treatment on Silk Fibers III. Polymerization Behavior of Methacrylamide (견섬유에 대한 메타크릴아미드의 처리효과 III. 메타크릴아미드의 중합거동)

  • 신봉섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.2
    • /
    • pp.32-40
    • /
    • 1992
  • Many studies have been carried out on the graft finishing in order to improve the quality of silk fiber. Various vinyl monomers, for instance, styrene, methylmethacrylate, 2-hydroxyeth-ylmethacrylate and methacrylamide, have been used practically up to date. Among these monomers, methacrylamide has been applied as the most favourable monomer onto silk fibers in recent years. The polymerization mechanism about styrene- and methylmethacrylate-grafted silk fiber has been studied by many researchers. They proposed that free radicals were formed and vinyl monomers were polymerized in silk fibroin by graft polymerization mechanism, while active sites were varied by the types of monomer and initiator as well as by the reaction condition. In general. there is another Opinion that monomers are polymerized and impregnated in the internal side of the fiber by homopolymerization, which has not been proved experimentally yet More than 10 years have been passed since methacrylamide was applied on the silk fiber, and at the present time most finishings are being achieved by methacrylamide. However, no attention has been paid to the polymerization mechanism of the methacrylamide-treated silk fiber yeL In this paper, the treatments of methacrylamide on silk fibers were studied in aqueous solution using potassium persulfate as an initiator. The polymerization mechanism of the methacrylamide-treated silk fibers was investigated and analyzed on the basis of the results of infrared spectroscopy, amino acid analysis and scanning electron microscopy. From the results of these instrumental analyses, it can be suggested that polymerization mechanism about the methacrylamide-treated silk fibers is not performed by graft polymerization which has been accepted generally in styrene and methylmethacrylate-grafted silk fibers. The different mechanism is supposed to be due to the difference in monomer types, initiator types and treatment conditions.

  • PDF

Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

  • Jin, Chung Keun;Lim, Sung Hyung
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.207-212
    • /
    • 2015
  • The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

Effect of Protonic Acids on the Reaction Rate in Chemical Polymerization of Polyaniline (폴리아닐린의 화학적 중합 시 반응속도에 미치는 양성자산의 영향)

  • Hong, Jang-Hoo;Jang, Beom Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.684-688
    • /
    • 2005
  • Aniline was polymerized in various protonic acid (HF, HC1, HBr, HI, $H_2SO_4$) aqueous solutions with different acidity. During the reaction, the dimer formation and the reaction rate were examined as functions of acidity (pH) and the size of counter ions. Open-circuit potential measurements were carried out to investigate the effect of protonic acid on the reaction rate. The results showed that polymerization rate in HF aqueous solution was very slow and polymerization did not occur in HI aqueous solution. These results were explained in terms of acidity and power of oxidation. The ratio of formation of dimers varied with the kind of protonic acid, and the results were explained with the nucleophilicity, solvation effect, and mobility of counter ions.

Mechanical Properties of Denture Base Resin through Controlling of Particle Size and Molecular Weight of PMMA (폴리(메틸 메타아크릴레이트) 입자 크기 및 분자량 제어에 따른 의치상 재료로서의 기계적 물성 변화)

  • 양경모;정동준
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.493-501
    • /
    • 2003
  • Poly(methyl methacrylate) (PMMA) particles, denture base resin, were synthesized by suspension polymerization through control of polymerization conditions (stabilizer concentration, co-monomer concentration, and the agitation speed) and evaluated changes in molecular weight and particle size. We also investigated their mechanical properties of compression-molded samples which were from synthesized polymer powder mixed with methyl methacrylate (MMA) solution. under the condition of volumetric ratio as 2:1(PMMA powder and MMA solution). The results shows that the mechanical properties were mainly affected by particle size over 100 ${\mu}$m (in particle size) and by molecular weight under 100 ${\mu}$m (in particle size). From these results, we concluded that the most appropriate particle size of PMMA powder for heat-cured denture base resins is around 100 ${\mu}$m. and its molecular weight is around 300000 (M$\sub$n/).

Fabrication of Electrochemical Microbial Biosensor Based on MWNT Supports Prepared by Radiation-Induced Graft Polymerization (방사선 그래프트법에 의해 제조된 탄소나노튜브 지지체를 기반으로 한 전기화학 미생물 바이오센서의 제작)

  • Shin, Soo-Ran;Kwen, Hai-Doo;Choi, Seong-Ho
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • A multi-walled carbon nanotube (MWNT) support with dual properties, an ionic property via tetra-amine and unpaired electrons via tri-amine, was prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) and the subsequent amination of its epoxy group. The electrochemical microbial biosensor (EMB) was then fabricated by immobilization of a microbe (Alkaligenes spp.) onto the dual property-modified electrode, which was prepared with the mixture of the MWNT support and a $Nafion^{(R)}$ solution on a glass carbon (GC) electrode surface by a hand-casting method. The sensing range of the prepared EMB for phenol in a phosphate buffer solution was 0.005~7.0 mM. The total concentration of phenolic compounds in a commercial red wine was also determined using the EMB.

PVA-based Graft Copolymer Composite Membrane Synthesized by Free-Radical Polymerization for CO2 Gas Separation (자유 라디칼 중합법을 활용한 CO2 기체분리용 PVA 기반 가지형 공중합체 복합막)

  • Park, Min Su;Kim, Jong Hak;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.268-274
    • /
    • 2021
  • One of the chronic problems in the issue of global warming is the emission of greenhouse gases. Carbon dioxide (CO2), which accounts for the highest proportion of various greenhouse gases, has been continuously researched by humans to separate it. From this point of view, a poly(vinyl alcohol) (PVA)-based copolymer with acrylic acid monomer was utilized in a gas separation membrane in this study. We employed a free radical polymerization to fabricate PVA-g-PAA (VAA) graft copolymer. It was utilized in the form of a composite membrane on a polysulfone substrate. The proper amount of acrylic acid reduced the crystallinity of PVA and increased CO2 solubility in separation membranes. In this perspective, we suggest the novel approach in CO2 separation membrane area by grafting and solution-diffusion.

Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

  • Hong, Hyun-Ki;Park, Chan-Kyo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1252-1256
    • /
    • 2010
  • A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.

Effect of PVA Polymerization on Synthesis of YAG:Ce3+ Phosphor Powders Prepared by a Solid-liquid Hybrid Route (PVA 중합도가 고상-액상 혼합 방식에 의한 YAG:Ce3+ 형광체 분말 합성에 미치는 영향)

  • Kim, A-Reum;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.424-429
    • /
    • 2014
  • YAG:$Ce^{3+}$ phosphor powders were synthesized using $Al(OH)_3$ seeds by means of a PVA-polymer-solution route. Various types of PVA with different molecular weights (different polymerization) were used. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1500^{\circ}C$ in a mix of nitrogen and hydrogen gases. The final powders were characterized via XRD, SEM, PSA, PL, and PKG analyses. The phosphor properties and morphologies of the synthesized powders were dependent on the PVA type. As the molecular weight of the PVA was increased, the particle size gradually decreased with agglomeration, and the luminous intensity of the phosphor increased. However, the phosphor powder prepared from the PVA exhibiting very high molecular weight, showed a 531 nm (blue) shift from the 541 nm (yellow) wavelength of the YAG:$Ce^{3+}$ phosphor. Finally, the synthesized YAG:$Ce^{3+}$ phosphor powder prepared from the PVA with 89,000 - 98,000 molecular weight showed phosphor properties similar to those of a commercial phosphor powder, but without a post-treatment process.

Precise Control of Thermoresponsive Properties of Polymers with Hydroxy Groups in the Side Chains (곁가지에 다양한 길이의 알코올 그룹을 지닌 고분자들의 저임계 용액온도 민감성 제어)

  • Lee, Hyung-Il
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.165-168
    • /
    • 2015
  • Thermoresponsive polymers were successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized by ATRP, followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-alkyne. Homopolymers having secondary amine groups, tertiary amines with hydroxyethyl and hydroxypropyl groups were synthesized by adding 2-azido-N-ethyl-ethanamine, 2-[(2-azidoethyl)amino]ethanol, and 2-[(2-azidoethyl)amino]propanol, respectively, to the PHEMA-alkyne backbone using click chemistry. Molecular weight (MW), molecular weight distribution (MWD), and click reaction efficiency were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The transmission spectra of the 1.0 wt% aqueous solutions of the resulting polymers at 650 nm were measured as a function of temperature. Results showed that the lower critical solution temperature (LCST) could be easily controlled by the length of the hydroxyalkyl groups.

Synthesis and Characterization of Thermo Sensitive Poly(styrene-co-N-isopropylacrylamide) Microgels (열 감응성 Poly(styrene-co-N-isopropylacrylamide) 마이크로겔의 합성 및 특성)

  • Cho, Suk Hyeong;Kim, Kong Soo;Jung, Tea Uk
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.397-402
    • /
    • 2005
  • Core-shell Poly(styrene-co-N-isopropylacrylamide) (poly(St-co-NIPAm) was prepared by soap-free emulsion polymerization of styrene (St) and N-isopropylacrylamide (NIPAm) in aqueous solution with potassium persulfate (KPS) as an initiator. The effects of St/NIPAm ratio, concentrations of monomer and crosslinker were studied. Also, Thermo sensitivity of microgels prepared was investigated. Particle size of microgels increased with increasing mol ratio of NIPAm to styrene. Transmittance of the microgel dispersion decreased rapidly when heated above a low critical solution temperature (near $32{\sim}34^{\circ}C$, cloud point). Swelling ratio of the microgel increased with increasing of the concentration of monomer (NIPAm) and decreased proportional to the concentration of crosslinker.