Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.1.165

Precise Control of Thermoresponsive Properties of Polymers with Hydroxy Groups in the Side Chains  

Lee, Hyung-Il (Department of Chemistry, University of Ulsan)
Publication Information
Polymer(Korea) / v.39, no.1, 2015 , pp. 165-168 More about this Journal
Abstract
Thermoresponsive polymers were successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized by ATRP, followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-alkyne. Homopolymers having secondary amine groups, tertiary amines with hydroxyethyl and hydroxypropyl groups were synthesized by adding 2-azido-N-ethyl-ethanamine, 2-[(2-azidoethyl)amino]ethanol, and 2-[(2-azidoethyl)amino]propanol, respectively, to the PHEMA-alkyne backbone using click chemistry. Molecular weight (MW), molecular weight distribution (MWD), and click reaction efficiency were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The transmission spectra of the 1.0 wt% aqueous solutions of the resulting polymers at 650 nm were measured as a function of temperature. Results showed that the lower critical solution temperature (LCST) could be easily controlled by the length of the hydroxyalkyl groups.
Keywords
atom transfer radical polymerization; click chemistry; lower critical solution temperature; hydroxyamine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci., 33, 1088 (2008).   DOI   ScienceOn
2 H.-i. Lee, J. Pietrasik, S. S. Sheiko, and K. Matyjaszewski, Prog. Polym. Sci., 35, 24 (2010).   DOI   ScienceOn
3 N. Rapoport, Prog. Polym. Sci., 32, 962 (2007).   DOI   ScienceOn
4 D. Roy, J. N. Cambre, and B. S. Sumerlin, Prog. Polym. Sci., 35, 278 (2010).   DOI   ScienceOn
5 M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi, and T. Okano, Prog. Polym. Sci., 32, 1123 (2007).   DOI   ScienceOn
6 C. de las H. Alarcon, S. Pennadam, and C. Alexander, Chem. Soc. Rev., 34, 276 (2005).   DOI   ScienceOn
7 P. M. Mendes, Chem. Soc. Rev., 37, 2512 (2008).   DOI   ScienceOn
8 S. S. Balamurugan, G. B. Bantchev, Y. Yang, and R. L. McCarley, Angew. Chem., Int. Ed., 44, 4872 (2005).   DOI   ScienceOn
9 R. Pelton, Adv. Colloid Interface Sci., 85, 1 (2000).   DOI   ScienceOn
10 D. Schmaljohann, Adv. Drug Deliver. Rev., 58, 1655 (2006).   DOI   ScienceOn
11 F. A. Plamper, A. Schmalz, M. Ballauff, and A. H. E. Mueller, J. Am. Chem. Soc., 129, 14538 (2007).   DOI   ScienceOn
12 J.-F. Lutz, K. Weichenhan, O. Akdemir, and A. Hoth, Macromolecules, 40, 2503 (2007).   DOI   ScienceOn
13 I. Dimitrov, B. Trzebicka, A. H. E. Mueller, A. Dworak, and C. B. Tsvetanov, Prog. Polym. Sci., 32, 1275 (2007).   DOI   ScienceOn
14 K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001).   DOI   ScienceOn
15 J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995).   DOI
16 C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001).   DOI   ScienceOn
17 G. Moad, E. Rizzardo, and S.H. Thang, Aust. J. Chem., 58, 379 (2005).   DOI   ScienceOn
18 B. S. Sumerlin and A. P. Vogt, Macromolecules, 43, 1 (2010).   DOI   ScienceOn
19 J.-F. Lutz, O. Akdemir, and A. Hoth, J. Am. Chem. Soc., 128, 13046 (2006).   DOI   ScienceOn
20 J.-F. Lutz and A. Hoth, Macromolecules, 39, 893 (2006).   DOI   ScienceOn
21 S.-H. Jung, H.-Y. Song, Y. Lee, H. M. Jeong, and H.-I. Lee, Macromolecules, 44, 1628 (2011).   DOI   ScienceOn