Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.4.268

PVA-based Graft Copolymer Composite Membrane Synthesized by Free-Radical Polymerization for CO2 Gas Separation  

Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.31, no.4, 2021 , pp. 268-274 More about this Journal
Abstract
One of the chronic problems in the issue of global warming is the emission of greenhouse gases. Carbon dioxide (CO2), which accounts for the highest proportion of various greenhouse gases, has been continuously researched by humans to separate it. From this point of view, a poly(vinyl alcohol) (PVA)-based copolymer with acrylic acid monomer was utilized in a gas separation membrane in this study. We employed a free radical polymerization to fabricate PVA-g-PAA (VAA) graft copolymer. It was utilized in the form of a composite membrane on a polysulfone substrate. The proper amount of acrylic acid reduced the crystallinity of PVA and increased CO2 solubility in separation membranes. In this perspective, we suggest the novel approach in CO2 separation membrane area by grafting and solution-diffusion.
Keywords
free-radical polymerization; solution-diffusion; gas separation membrane; carbon dioxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, J. Wang, X. Zhang, J. Li and L. Li, "Polyvinylamine/ZIF-8-decorated metakaolin composite membranes for CO2/N2 separation", Sep. Purif. Techn. 270, 118800 (2021).   DOI
2 Q. Wang, F. Huang, C. J. Cornelius and Y. Fan, "Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations", J. Membr. Sci. 621, 118785 (2021).   DOI
3 A. B. Shelekhin, E. J. Grosgogeat and S.-T. Hwang, "Gas separation properties of a new polymer/inorganic composite membrane", J. Membr. Sci. 66, 129 (1992).   DOI
4 M. Lazarus and H. van Asselt, "Fossil fuel supply and climate policy: exploring the road less taken", Clim. Change, 150, 1 (2018).   DOI
5 P. Li and F. Handan Tezel, "Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite", Micropor. Mesopor. Mat. 98, 94 (2007).   DOI
6 T.-H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones and S. Nair, "A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals", Angew. Chem.-Int. Edit. 49, 9863 (2010).   DOI
7 R. Heede, "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854-2010", Clim. Change, 122, 229 (2014).   DOI
8 M. Wik and I. Renberg, "Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion", J. Paleolimn. 15, 193 (1996).   DOI
9 K.-H. Erb, S. Gingrich, F. Krausmann and H. Haberl, "Industrialization, Fossil Fuels, and the Transformation of Land Use", J. Ind. Ecol. 12, 686 (2008).   DOI
10 R. J. Andres, D. J. Fielding, G. Marland, T. A. Boden, N. Kumar and A. T. Kearney, "Carbon dioxide emissions from fossil-fuel use, 1751-1950", Tellus B, 51, 759 (1999).   DOI
11 N. Apergis and J. E. Payne, "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model", Energy Econ. 42, 226 (2014).   DOI
12 S. C. Moser, "Communicating climate change: history, challenges, process and future directions", WIREs Clim. Change, 1, 31 (2010).   DOI
13 W. P. Nel and C. J. Cooper, "Implications of fossil fuel constraints on economic growth and global warming", Energy Policy, 37, 166 (2009).   DOI
14 C. Mitchell, "THE ENGLAND AND WALES NON-FOSSIL FUEL OBLIGATION: History and Lessons", Annu. Rev. Energ. Environ. 25, 285 (2000).   DOI
15 K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, "Carbon Dioxide Capture in Metal -Organic Frameworks", Chem. Rev. 112, 724 (2012).   DOI
16 M. D. Burkart, N. Hazari, C. L. Tway and E. L. Zeitler, "Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization", ACS Catal. 9, 7937 (2019).   DOI
17 P. Pullumbi, F. Brandani and S. Brandani, "Gas separation by adsorption: technological drivers and opportunities for improvement", Curr. Opin. Chem. Eng. 24, 131 (2019).   DOI
18 X. Li, K. Li, S. Tao, H. Ma, R. Xu, B. Wang, P. Wang and Z. Tian, "Ionothermal synthesis of LTA-type aluminophosphate molecular sieve membranes with gas separation performance", Micropor. Mesopor. Mat. 228, 45 (2016).   DOI
19 A. I. Akhmetshina, N. R. Yanbikov, A. A. Atlaskin, M. M. Trubyanov, A. Mechergui, K. V. Otvagina, E. N. Razov, A. E. Mochalova and I. V. Vorotyntsev, "Acidic Gases Separation from Gas Mixtures on the Supported Ionic Liquid Membranes Providing the Facilitated and Solution-Diffusion Transport Mechanisms", Membranes, 9, 9 (2019).   DOI
20 W. Jiao, Y. Ban, Z. Shi, X. Jiang, Y. Li and W. Yang, "Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole", J. Membr. Sci. 533, 1 (2017).   DOI
21 W. Guo, S. M. Mahurin, S. Wang, H. M. Meyer, H. Luo, X. Hu, D.-e. Jiang and S. Dai, "Ion-gated carbon molecular sieve gas separation membranes", J. Membr. Sci. 604, 118013 (2020).   DOI
22 D. E. Gottschlich, D. L. Roberts and J. D. Way, "A theoretical comparison of facilitated transport and solution-diffusion membrane modules for gas separation", Gas Sep. Purif. 2, 65 (1988).   DOI
23 D. Wu, C. Sun, P. K. Dutta and W. S. Winston Ho, "SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas", J. Membr. Sci. 534, 33 (2017).   DOI
24 R. Bounaceur, E. Berger, M. Pfister, A. A. Ramirez Santos and E. Favre, "Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool", J. Membr. Sci. 523, 77 (2017).   DOI
25 M. Washim Uddin and M. -B. Hagg, "Effect of monoethylene glycol and triethylene glycol contamination on CO2/CH4 separation of a facilitated transport membrane for natural gas sweetening", J. Membr. Sci. 423-424, 150 (2012).   DOI
26 H. Zhou, J. Xie and S. Ban, "Insights into the ultrahigh gas separation efficiency of Lithium doped carbon nanotube membrane using carrier-facilitated transport mechanism", J. Membr. Sci. 493, 599 (2015).   DOI
27 D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013).   DOI
28 S. Tul Muntha, A. Kausar and M. Siddiq, "Progress in Applications of Polymer-Based Membranes in Gas Separation Technology", Polym.-Plast. Technol. Eng. 55, 1282 (2016).   DOI
29 M. C. Garcia-Payo, C. A. Rivier, I. W. Marison and U. von Stockar, "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions", J. Membr. Sci. 198, 197 (2002).   DOI
30 C. A. Rivier, M. C. Garcia-Payo, I. W. Marison and U. von Stockar, "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: I. Theory and simulations", J. Membr. Sci. 201, 1 (2002).   DOI
31 H. A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D. F. Mohshim and A. Mushtaq, "Recent Applications of Polymer Blends in Gas Separation Membranes", Chem. Eng. Technol. 36, 1838 (2013).   DOI
32 D. De Meis, M. Richetta and E. Serra, "Microporous Inorganic Membranes for Gas Separation and Purification", Interceram-Int. Ceram. Rev. 67, 16 (2018).   DOI
33 H. Cong, M. Radosz, B. F. Towler and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Techn. 55, 281 (2007).   DOI
34 P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Techn. 81, 243 (2011).   DOI