• Title/Summary/Keyword: solution accuracy

Search Result 1,824, Processing Time 0.028 seconds

The Effects of Design Thinking-based Collaborative Workshop on Creative Problem Solving: Focused on the development case of SAP Smart Bulk Bin Monitoring System (디자인 사고 기반의 협력적 워크숍이 창의적 문제해결에 미치는 영향 : SAP 스마트 벌크빈 모니터링 시스템 개발 사례를 중심으로)

  • Jeon, Young-Ok;Choi, Hye-Jeong
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.429-436
    • /
    • 2017
  • A design thinking-based collaborative workshop in which various stakeholders in the milk processing industry circulation ecosystem participated shows a new problem innovation paradigm that encourages the spread of practical prototyping culture. in the expression of empathy and collective intelligence among members on facing issues, the conversion of collaboration and communication methods, the business handling of the organization based on the design work method as 'creativity mechanism'. In this workshop, which was promoted in three stages of 'approach to problems', 're-definition of problems', and 'experience-based future vision design', participants themselves redefine real problems in terms of the accuracy of feed orders between feed suppliers and livestock farmers, ordering of feeds on time, cost reduction of feed supply and present new alternatives and expanded business areas. The results suggested in this workshop suggest the usefulness of design thinking in business innovation in that they presented how to approach the problem and a creative thinking system to find its solution to direct and indirect stakeholders of the industry as well as the improvement of supply and demand rate of livestock feed and quality.

Numerical Analysis of Multi-dimensional Consolidation Based on Non-Linear Model (비선형 모델에 의한 다차원 압밀의 수치해석)

  • Jeong, Jin-Seop;Gang, Byeong-Seon;Nam, Gung-Mun
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.59-72
    • /
    • 1985
  • This paper deals with the numerical analysis by the (mite element method introducing Biot's theory of consolidation and the modified Cambridge model proposed by Roscoe school of Cambridge University as constitutive equation and using Christian-Boehner's technique. Especially, time interval and division of elements are investigated in vies of stability and economics. In order to check the validity of author's program, the program was tested with one-dimensional consolidation case followed by Terzaghi's exact solution and with the results of the Magnan's analysis for existing banking carried out for study at Cubzac-les-ports in France. The main conclusions obtained are summarized as follows: 1. In the case of one-dimensional consolidation, the more divided the elements are near the surface of the foundation, the higher the accuracy of the numerical analysis is. 2. For the time interval, it is stable to divide 20 times per 1-lg cycle. 3. At the element which has long drain distance, the Mandel-fryer effect appears due to time lag. 4. Lateral displacement at an initial loading stage predicted by author's program, in which the load was assumed as not concentrative. but rather in grid form, is well consistent with the value of observation. 5. The pore water pressure predicted by author's program has a better accordance with the value of observation compared with Magnan's results. 6. Optimum construction control by Matsuo-Kawamura's method is possible with the predicted lateral displacement and settlement by the program.

  • PDF

The Effect of Mask Patterns on Microwire Formation in p-type Silicon (P-형 실리콘에서 마이크로 와이어 형성에 미치는 마스크 패턴의 영향)

  • Kim, Jae-Hyun;Kim, Kang-Pil;Lyu, Hong-Kun;Woo, Sung-Ho;Seo, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.418-418
    • /
    • 2008
  • The electrochemical etching of silicon in HF-based solutions is known to form various types of porous structures. Porous structures are generally classified into three categories according to pore sizes: micropore (below 2 nm in size), mesopore (2 ~ 50 nm), and macropore (above 50 nm). Recently, the formation of macropores has attracted increasing interest because of their promising characteristics for an wide scope of applications such as microelectromechanical systems (MEMS), chemical sensors, biotechnology, photonic crystals, and photovoltaic application. One of the promising applications of macropores is in the field of MEMS. Anisotropic etching is essential step for fabrication of MEMS. Conventional wet etching has advantages such as low processing cost and high throughput, but it is unsuitable to fabricate high-aspect-ratio structures with vertical sidewalls due to its inherent etching characteristics along certain crystal orientations. Reactive ion dry etching is another technique of anisotropic etching. This has excellent ability to fabricate high-aspect-ratio structures with vertical sidewalls and high accuracy. However, its high processing cost is one of the bottlenecks for widely successful commercialization of MEMS. In contrast, by using electrochemical etching method together with pre-patterning by lithographic step, regular macropore arrays with very high-aspect-ratio up to 250 can be obtained. The formed macropores have very smooth surface and side, unlike deep reactive ion etching where surfaces are damaged and wavy. Especially, to make vertical microwire or nanowire arrays (aspect ratio = over 1:100) on silicon wafer with top-down photolithography, it is very difficult to fabricate them with conventional dry etching. The electrochemical etching is the most proper candidate to do it. The pillar structures are demonstrated for n-type silicon and the formation mechanism is well explained, while such a experimental results are few for p-type silicon. In this report, In order to understand the roles played by the kinds of etching solution and mask patterns in the formation of microwire arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, dimethyl sulfoxide (DMSO), iso-propanol, and mixtures of HF with water on the structure formation on monocrystalline p-type silicon with a resistivity with 10 ~ 20 $\Omega{\cdot}cm$. The different morphological results are presented according to mask patterns and etching solutions.

  • PDF

Topology Optimization of Incompressible Flow Using P1 Nonconforming Finite Elements (P1 비순응 요소를 이용한 비압축성 유동 문제의 위상최적화)

  • Jang, Gang-Won;Chang, Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1139-1146
    • /
    • 2012
  • An alternative approach for topology optimization of steady incompressible Navier-Stokes flow problems is presented by using P1 nonconforming finite elements. This study is the extended research of the earlier application of P1 nonconforming elements to topology optimization of Stokes problems. The advantages of the P1 nonconforming elements for topology optimization of incompressible materials based on locking-free property and linear shape functions are investigated if they are also valid in fluid equations with the inertia term. Compared with a mixed finite element formulation, the number of degrees of freedom of P1 nonconforming elements is reduced by using the discrete divergence-free property; the continuity equation of incompressible flow can be imposed by using the penalty method into the momentum equation. The effect of penalty parameters on the solution accuracy and proper bounds will be investigated. While nodes of most quadrilateral nonconforming elements are located at the midpoints of element edges and higher order shape functions are used, the present P1 nonconforming elements have P1, {1, x, y}, shape functions and vertex-wisely defined degrees of freedom. So its implentation is as simple as in the standard bilinear conforming elements. The effectiveness of the proposed formulation is verified by showing examples with various Reynolds numbers.

Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems (유체 구조 상호작용 문제를 가진 다공성 촉매 담체에서 실동경계조건의 역문제 해석을 위한 최적화 기법)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1161-1170
    • /
    • 2011
  • This paper presents a solution to the inverse problem for the service boundary conditions of thermal-flow and structure analysis in a catalyst substrate. The exhaust-gas purification efficiency of a catalyst substrate is influenced by the shape parameter, catalyst ingredients and so on and is estimated by the thermal flow uniformity. The formulations of the inverse problem of obtaining the thermal-flow parameters (inlet temperature, velocity, heat of reaction, convective heat-transfer coefficient) and the direct problem of estimating from a given outlet temperature distribution are described. An experiment was designed and the response-surface optimization technique was used to solve the proposed inverse problem. The temperature distribution of the catalyst substrate was obtained by thermal-flow analysis for the predicted thermal-flow parameters. The thermal stress and durability assessments for the catalyst substrate were performed on the basis of this temperature distribution. The efficiency and accuracy of the inverse approach have been demonstrated through the achievement of good agreement between the thermal-flow response surface model and the results of experimental vehicle tests.

Modification of IKONOS RPC Using Additional GCP (지상기준점 추가에 의한 IKONOS RPC 갱신)

  • Bang, Ki-In;Jeong, Soo;Kim, Kyung-Ok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.41-50
    • /
    • 2002
  • RPM is the one of the sensor models which is proposed by Open GIS Consortium (OGC) as image transfer standard. And it is the sensor model for end-users using IKONOS, a commercial pushbroom satellite, imagery which provide about 1m ground resolution. Parameters called RPC which is IKONOS RFM coefficients are serviced to end-users. But if some users try to make additional effort to get rigorous geo-spatial information, it is necessary to apply mathematic or abstract sensor models, because vendors don't offer any ancillary data for physical sensor models such as satellite orbit and navigation. Abstract sensor models such as pushbroom Direct Linear Transform (DLT) require many GCPs well distributed in imagery, and mathematic sensor model such as RFM, polynomials need much more GCPs. Therefore RPC modification using additional a few GCPs is the best solution. In this paper, two methods are proposed to modify RPC. One is method to use pseudo GCPs generated in normalized cubic, and another method uses parameters observations and a few GCPs. Through two methods, we get improvement of accuracy 50% and over.

  • PDF

Large-scale 3D SSI Analysis using KIESSI-3D Program (KIESSI-3D 프로그램을 이용한 대형 3차원 SSI 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • The soil-structure interaction(SSI) effect should be considered to accurately assess the seismic response of structure constructed on soft soil site other than the hard bedrock. Recently, the demand of SSI analysis has increased due to strengthening of the regulatory guidelines of nuclear power plant such as the USNRC SRP 3.7.2. In this study an accuracy and running time of the KIESSI-3D program for large-scale 3D SSI analysis were investigated. The seismic SSI analysis using the KIESSI-3D program was performed for several examples of large-scale three-dimensional soil-structure interaction system. The analysis results were compared with those of the ACS/SASSI program. Good agreements in transfer functions at selected locations showd that KIESSI-3D yields accurate solution for large-scale SSI problem. Moreover, it was found that running speed of the KIESSI-3D for large-scale 3D SSI analysis is much faster than that of the ACS/SASSI about 30~2000 times.

FEM Electrical Resistivity Modeling in Cylindrical Coordinates (원통 좌표계에서의 전기비저항 유한요소 모델링)

  • Choi Wonseok;Kim Jung-Ho;Park KwonGyu;Kim Hak-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.206-216
    • /
    • 2002
  • The finite element method (FEM), a powerful numerical modeling tool for solving various engineering problems, is frequently applied to three-dimensional (3-D) modeling thanks to its capability of discretizing and simulating the shape of model with finite number of elements. Considering the accuracy of the solution and computing time in modeling of engineering problems, it is preferable to construct physical continuity and simplify mesh system. Although there exist systematic mesh generation systems for arbitrary shaped model, it is hard to model a simple cylinder in terms of 3-D coordinate system especially in the vicinity of the central axis. In this study I adopt cylindrical coordinate system for modeling the 3-D model space and define the origin of the coordinates with mathematically clear coordinate transformation. Since we can simulate the whole space with hexahedral elements, the cylindrical coordinate system is effective in handling the 3-D model structure. The 3-D do resistivity modeling scheme developed in this study provides basie principle for borehole-to-surface resistivity survey, which can be a useful tool for the application to environmental problem.

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

Validation of a HPLC MS/MS Method for Determination of Doxorubicin in Mouse Serum and its Small Tissues (마우스 혈장과 조직에서의 doxorubicin 측정 HPLC-MS/MS 방법)

  • Park, Jung-Sun;Kim, Hye-Kyung;Lee, Hye-Won;Lee, Mi-Hyun;Kim, Hyun-Gi;Chae, Soo-Wan;Chae, Han-Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • Doxorubicin (DXR) is a type of anti-cancer drug called an 'anthracycline glycoside', It works by impairing DNA synthesis, a crucial feature of cell division, and thus is able to target rapidly dividing cells. Doxorubicin is a very serious anti-cancer medication with definite potential to do great harm as well as great good. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method was developed to identify and quantify DXR in small-volume biological samples. After the addition of internal standard (IS, $5{\mu}L\;of\;1{\mu}M/ml$ daunorubicin methanol solution) into the serum sample, the drug and IS were extracted by methanol. Following vortex for a 1min and centrifugation at 15,000g for 10 min the organic phase was transferred and evaporated under a vacuum. The residue was reconstituted with $350{\mu}L$ of mobile phase and $10{\mu}L$ was injected into C18 column with mobile phase composed of 0.05M ammonium acetate (0.1 M acetic acid adjusted to pH 3.5) and acetonitrile (40:60, v/v). The flow rate was kept constant at $350{\mu}L/min$. The ions were quantified in the multiple reaction mode (MRM), using positive ions, on a triple quadrupole mass spectrometer. The lower limits of quantification for Doxorubicin in plasma and small tissues were approximately 0.5 ng/mL and 0.5 ng/mL respectively. Intra- and inter-assay accuracy (% of nominal concentration) and precision (% CV) for all analytes were within 15%, respectively.

  • PDF