An efficient 2.5D inversion of loop-loop electromagnetic data

루프-루프 전자탐사자료의 효과적인 2.5차원 역산

  • Song, Yoon-Ho (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Jung-Ho (Geoelectric Imaging Laboratory, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 송윤호 (한국지질지원연구원 지하수지열연구부) ;
  • 김정호 (한국지질자원연구원 지반탐사연구실)
  • Published : 2008.02.29

Abstract

We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

2.5차원 전자탐사 적분방정식의 확장된 Born 근사해 또는 국소 비선형 근사에 기초하여 루프-루프 전자탐사 역산 알고리듬이 개발되었다 송수신 배열은 수평 동일면(HCP) 또는 수직 동일면(VCP) 방식이고, 다중 주파수 및 다중 송수신 간격을 포함할 수 있으며 PC에서 작동된다. 안정적이고 고해상도를 유지하는 역산이 가능하도록 변수분해 행렬과 Backus-Gilbert 분산 함수 분석을 통해 감도 분포의 함수로서의 공간적으로 변화하는 최적 Lagrange 곱수 결정 알고리듬을 포함하였다. HCP와 VCP 배열 자료가 지하 전기비저항 구조에 따라 서로 다른 감도를 가짐에 따라 동시 역산에서 안정성과 해상도에 영향을 미치게 되므로, 계산값과 측정값 차의 분산에 따라 가중치를 적용하는 방식을 도입하였다. 모델링 코드의 정확성은 통상적으로 루프-루프 전자탐사에서 사용하는 주파수 및 송수신 간격 범위에서 유한차분법에 의해 계산된 결과와의 비교를 통하여 증명되었다. 개발된 역산 알고리듬은 먼저 반무한 공간내 전도체 및 저항체가 포함된 모델에 대한 계산자료에 적용되어 성능이 입증되었다. 현장자료에 적용하고 그 결과 영상을 전기비저항 탐사자료에 대한 역산 결과와 비교하여, 의미있는 지하구조의 영상을 얻을 수 있음을 확인하였다.

Keywords

References

  1. Chave, A. D., 1983, Numerical integration of related Hankel transforms by quadrature and continued fraction algorithm: Geophysics 48, 1671-1686. doi: 10.1190/1.1441448
  2. Constable, S., Parker, L. P., and Constable, C. G., 1987, Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics 52, 289-300. doi: 10.1190/1.1442303
  3. Frischknecht, F. C., Labson, V. F., Spies, B. R., and Anderson, W. L., 1991, Profiling methods using small sources, in M. N. Nabighian ed., Electromagnetic methods in applied geophysics - Applications, 105-270: Society of Exploration Geophysicists
  4. Habashy, T. M., Groom, R. W., and Spies, B. R., 1993, Beyond the Born and Rytov approximation: a nonlinear approach to electromagnetic scattering: Journal of Geophysical Research 98, 1759-1775 https://doi.org/10.1029/92JB02324
  5. Hohmann, G. W., 1975, Three-dimensional induced polarization and electromagnetic modelling: Geophysics 40, 309-324. doi: 10.1190/ 1.1440527
  6. Hohmann, G.W., 1988, Numerical modeling for electromagnetic methods of geophysics, in M.N. Nabighian, ed., Electromagnetic methods in applied geophysics - Theory, 313-363: Society of Exploration Geophysicists
  7. Kim, H. J., Song, Y., and Lee, K. H., 1999, Inequality constraint in leastsquares inversion of geophysical data: Earth Planets Space 51, 255-259 https://doi.org/10.1186/BF03352229
  8. Menke, W., 1984, Geophysical data analysis: discrete inverse theory: Academic Press, Inc
  9. Sasaki, Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data: Geophysics 54, 254-262. doi: 10.1190/1.1442649
  10. Spies, B. R., and Frischknecht, F. C., 1991, Electromagnetic sounding, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics - Applications, 285-425: Society of Exploration Geophysicists
  11. Torres-Verdin, C., and Habashy, T. M., 1994, Rapid 2.5-D forward modeling and inversion via a new non-linear scattering approximation: Radio Science 29, 1051-1079. doi: 10.1029/94RS00974
  12. Won, I. J.,Keiswetter,D. A., Fields, G. R. A., and Sutton, L. C., 1996, GEM-2: a new multifrequency electromagnetic sensor: Journal of Environmental & Engineering Geophysics 1, 129-137 https://doi.org/10.4133/JEEG1.2.129
  13. Yi, M.-J., Kim, J.-H., Song,Y., Cho, S.-J., Chung, S.-H., and Suh, J.-H., 2001, Three-dimensional imaging of subsurface structures using resistivity data: Geophysical Prospecting 49, 483-497. doi: 10.1046/j.1365-2478. 2001.00269.x
  14. Yi, M.-J., Kim, J.-H., and Chung, S.-H., 2003, Enhancing the resolving power of the least-squares inversion with active constraint balancing: Geophysics 68, 931-941. doi: 10.1190/1.1581045