• Title/Summary/Keyword: soluble aggregates

Search Result 31, Processing Time 0.029 seconds

Improved recovery of active GST-fusion proteins from insoluble aggregates: solubilization and purification conditions using PKM2 and HtrA2 as model proteins

  • Park, Dae-Wook;Kim, Sang-Soo;Nam, Min-Kyung;Kim, Goo-Young;Kim, Jung-Ho;Rhim, Hyang-Shuk
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • The glutathione S-transferase (GST) system is useful for increasing protein solubility and purifying soluble GST fusion proteins. However, purifying half of the GST fusion proteins is still difficult, because they are virtually insoluble under non-denaturing conditions. To optimize a simple and rapid purification condition for GST-pyruvate kinase muscle 2 (GST-PKM2) protein, we used 1% sarkosyl for lysis and a 1 : 200 ratio of sarkosyl to Triton X-100 (S-T) for purification. We purified the GST-PKM2 protein with a high yield, approximately 5 mg/L culture, which was 33 times higher than that prepared using a conventional method. Notably, the GST-high-temperature requirement A2 (GST-HtrA2) protein, used as a model protein for functional activity, fully maintained its proteolytic activity, even when purified under our S-T condition. This method may be useful to apply to other biologically important proteins that become highly insoluble in the prokaryotic expression system.

Relation of Dynamic Changes in Interfacial Tension to Protein Destabilization upon Emulsification

  • Sah, Hong-Kee;Choi, Soo-Kyoung;Choi, Han-Gon;Yong, Chul-Soon
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.381-386
    • /
    • 2002
  • The objective of this study was to link conformational changes of proteins at a water/methylene chloride interface to their destabilization upon emulsification. When 4 aqueous protein solutions (bovine serum albumin, $\beta$-lactoglobulin, ovalbumin, or ribonuclease) were emulsified in methylene chloride, considerable proportions of all the proteins became water insoluble aggregates. There were also noticeable changes in the compositions of their water-soluble species. A series of water/methylene chloride interfacial reactions upon the proteins was considered a major cause of the phenomena observed. Based on this supposition, the interfacial tension was determined by a Kruss DVT-10 drop volume tensiometer under various experimental conditions. It substantiated that the interfacial tension was high enough to cause the adsorption of all the proteins. Under our experimental conditions, their presence in the aqueous phase resulted in reductions of the interfacial tension by the degrees of 8.5 - 17.1 mN $m^{-1}$. In addition, dynamic changes in the interfacial tension were monitored to compare relative rates at which the adsorbed proteins underwent conformational, structural rearrangements at the interface. Such information helped make a prediction about how easily proteins would denature and aggregate during emulsification. Our study indicated that emulsifying aqueous protein solutions in organic solvents should be handled with care, due to adverse interfacial effects.

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.

Isolation of Streptomyces sp. KK565 as a Producer of ${\beta}-Amyloid$ Aggregation Inhibitor

  • Hwang, Sung-Eun;Im, Hyung-Min;Kim, Dong-Hoon;Shin, Hyun-Ju;Shin, Dong-Hoon;Park, Jeong-Eun;Jo, In-Ho;Kim, Chang-Jin;Yoo, Jong-Shin;Kang, Jong-Min;Lim, Dong-Yeon;Ahn-Jo, Snag-Mee;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.809-814
    • /
    • 2003
  • ${\beta}-amyloid$ ($A{\beta}$) peptides from the proteolytic processing of ${\beta}-amyloid$ precursor protein (${\beta}-APP$) aggregates in the brain to form senile plaques, and their aggregation plays a key role in pathogenesis of Alzheimer's disease (AD). To isolate an active compound that has an $A{\beta}$ aggregation-inhibitory activity, 2,000 microbial metabolite libraries were screened based on their ability to inhibit $A{\beta}$ aggregation by using both Congo red and thioflavin T assays. As a result, a water-soluble fraction of a soil microorganism, KK565, showed a potent $A{\beta}$ aggregation-inhibitory activity. The strain was identified as Streptomyces species, based on the cultural and morphological characteristics, the presence of diaminopimelic acid in the cell wall, and the sugar patterns for the whole-cell extract. In addition, the purification of active principle resulted in identifying a heat-unstable protein responsible for the $A{\beta}$ aggregation-inhibitory activity.

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF

Detection of PED virus by the immunoelectron microscopy and immunogold conjugate immunoelectron microscopy (면역전자현미경(免疫電子顯微鏡)(IEM) 기법(技法) 및 immunogold conjugate 면역전자현미경(免疫電子顯微鏡)(IGC-IEM) 기법(技法)을 이용(利用)한 돼지 분변내 PED 바이러스의 검출(檢出))

  • Kim, Jae-hoon;Hwang, Eui-kyung;Bae, You-chan;Son, Hyun-joo;Park, Jung-won;Yoon, Yong-dhuk
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.575-581
    • /
    • 1995
  • Both immunoelectron microscopy(IEM) and immunogold conjugate immunoelectron microscopy (IGC-IEM) techniques were developed for the detection of porcine epidemic diarrhea virus(PEDV) from the feces. Fecal samples were incubated sequentially with anti-PEDV monoclonal antibody(MoAb) and immunogold conjugated goat anti-mouse IgG+IgM. Then negatively stained, mounted on the formvar carbon-coated copper EM grids and observed by the transmission electron microscope. By the direct electron microscopy(DEM), coronavirus particles were observed from 17 cases of total 33 fecal samples of grower pigs and sows. The virons of coronavirus were moderately pleomorphic but mostly spherical, with a diameter ranged from 90 to 190nm. PED virus particles were identified from 15 cases of 17 DEM positive samples by the IEM and IGC-IEM techniques. Aggregates of PED virus coated with specific antibody were seen in fecal samples incubated with homologous anti-PED virus MoAb but not in control samples incubated with anti-TGE virus MoAb. Following incubation with immunogold-conjugated secondary antibody, the gold granules were usually distributed around and among the virus particles and soluble and viral particle-associated antigen. So, IEM and IGC-IEM techniques were proved a rapid and sensitive methods for detection and identification of PED virus from fecal and intestinal contents.

  • PDF

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.

Stable Macro-aggregate in Wet Sieving and Soil Properties (습식체별에 안정한 대입단과 토양특성과의 관계)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyub-Sung;Oh, Dong-Shig;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2007
  • Soil aggregates, resulting from physico-chemical and biological interactions, are important to understand carbon dynamics and material transport in soils. The objective of this study is to investigate stable macro-aggregate (> 0.25mm diameter) in wet sieving (SM) and their relation to soil properties in 15 sites. The clay contents of soils were ranged from 1% to 33%, and their land uses included bare and cultivated lands of annual upland crops, orchard, and grass. Undisturbed 3 inch cores with five replicates were sampled at topsoil (i.e., 0- to 10-cm depth), for analyzing SM and physico-chemical properties, after in situ measurement of air permeability. SM of sandy soils, with clay content less than 2%, was observed as 0%. Except the sandy soils, SM of soils mainly depended on land uses, showing 27%~35% in soils with annual plants such as vegetable and corn, 51% in orchard, and 75% in grass. This sequence of SM is probably due to the different strength of soil disturbance like tillage with different land uses. SM had significant correlation with cation exchange capacity, organic matter content, sand, clay, silt, bulk density, and exchangeable potassium (K) and magnesium (Mg), whereas fluctuating properties with fertilization such as pH, EC, and water soluble phosphorus weren't significantly correlated to the SM. Particularly, exchangeable calcium (Ca) had significant relation with SM, only except soils with oversaturating Ca. This study, therefore, suggested that SM could perceive different land uses and the change of soil properties in soils, necessarily considering soil textures and Ca over-saturation.

Expression and Isolation of Limonoid UDP-glucosyltransferase, a Bitterness-reducing Enzyme, in E.coli (감귤의 고미제거 효소인 limonoid UDP-glucosyltransferase의 대장균 내에서의 발현과 이의 분리)

  • K.Cho, So-Mi;Kim, Young-Mee;Kim, Min-Young;Lee, Do-Seung;Kim, Jae-Hoon;Park, Se-Pill;Riu, Key-Zung;Lee, Dong-Sun
    • Food Science and Preservation
    • /
    • v.18 no.2
    • /
    • pp.208-211
    • /
    • 2011
  • Limonoids are abundant as bitter taste in citrus fruit and other plants. Interestingly. limonoid UDP-glucosyltransferase (LUGT) effectively ameliorates the bitterness from limonoid. The high level of LUGT expression in Escherichia coli can result in the formation of insoluble aggregates known as inclusion bodies. We isolated the soluble LUGT protein when this inclusion body was renaturated with ${\beta}$-cyclidextrin treatment after protein denaturation by urea. Our present results suggest that the isolation of LUGT from inclusion body in cells leads to shed light to characterize the enzyme for food industry purposes.

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.