Browse > Article

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis  

Kim, Jong-Uk (Department of Molecular Sciences and Technology, Ajou University)
Choi, Dong-Soon (Department of Obstetrics and Gynecology, School of Medicine, Ajou University)
Joo, Hyun (Mitochondrial Signaling Laboratory, Department of Molecular Physiology & Biophysics, College of Medicine, Inje University)
Min, Churl-K. (Department of Molecular Sciences and Technology, Ajou University)
Publication Information
KSBB Journal / v.23, no.3, 2008 , pp. 231-238 More about this Journal
Abstract
The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.
Keywords
TIMP-2; MMP; gene shuffling; StEP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kamiya, H., M. Ito, and H. Harashirna (2007), Induction of various mutations during PCRs with manganese and 8-hydroxy-dGTP. BioI. Pharm. Bull. 4, 842-844
2 Cadwell, R. C., and G. F. Joyce (1992), Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28-33   DOI   ScienceOn
3 Miyazaki, K. (2002), Random DNA fragmentation with endonuclease V application to DNA shuffling. Nucleic Acids Res. 30, e139   DOI   ScienceOn
4 Zhao, H. and F. Arnold (1999), Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Engineering 12, 47-53   DOI
5 Jermutus, L., A. Honegger, F. Schwesinger, J. Hanes, and A. Pluckthun (2001), Tailoring in vitro evolution for protein affmily or stability. Proc. Natl. Acad. Sci. USA 94, 4504-4509
6 Stemmer, W. P. C. (1994), Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389-391   DOI   ScienceOn
7 Butler, G. S., M. Hutton, B. A Wattam, F. Willenbrock, and G. Murphy (1999), The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J. BioI. Chem. 274, 20391-20396   DOI
8 Stetler-Stevenson, W. G., S. Aznavoorian, and L. A Liotta (1993), Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell BioI. 9, 541-573   DOI   ScienceOn
9 Hernandez-Barrantes, S., M. Toth, M. M. Bernardo, M. Yurkova, D. C. Gervasi, Y. Raz, Q. A. Sang, R. Fridman (2000), Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TlMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. J. BioI. Chem. 275, 12080-12089   DOI   ScienceOn
10 Frederick, W. M., A. F. Tom, F. James, B. F. Robert, D. C. Mark, and A. W. Richard (1998), High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterization of its interaction site with matrix metalloproteinases-3. J. BioI. Chem. 273, 21736-21743   DOI   ScienceOn
11 Boyd, R. S., and F. R. Balkwill (1999), MMP-2 release and activation in ovarian carcinoma: the role of fibroblasts. Br. J. Cancer 80, 315-321   DOI   ScienceOn
12 Westerlund, A., P. U. Hujanen, and T. Turpeenniemi-Hujanen (1997), Fibroblasts srimulate human ovarian cancer cell invasion and expression of 72-kDa gelatinase A (MMP-2). Gynecol. Oncol. 67, 76-82   DOI   ScienceOn
13 Negro, A., M. Onisto, L. Masiero, and S. Garbisa (1995), Synthesis and refolding of human TIMP-2 from E coli, with specific activity for MMP-2. FEBS Lett. 360, 52-56   DOI   ScienceOn
14 Baker, A. H., D. R. Edwaro;, and G. Murphy (2002), Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719-3727   DOI
15 Joo, H., Z. Lin, and F. Arnold (1999), Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670-672   DOI   ScienceOn
16 Altamirao, M. M., J. M. Blackburn, C. Aguayo, and A. R. Fersht (2000), Directed evolution of new catalytic activity using the alphafbeta-barrel scaffold. Nature 403, 617-622   DOI   ScienceOn
17 Zhao, H. and F. Arnold (1997), Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 1307-1308   DOI   ScienceOn
18 Mannello, F., G. Gazzanelli (2001), Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis 6, 479-482   DOI   ScienceOn
19 Williamson, R. A. (2001), Refolding of TIMP-2 from Escherichia coli inclusion bodies. Methods Mol. BioI. 151, 257-265
20 Maquoi, E., F. Frankenne, E. Baramova, C. Munaut, N. E. Sounni, A. Remacle, A. Noel, G. Murphy, and J.-M. Foidart (2000), Membrane type-1 matrix metalloproteinase-associated degradation of tissue inhibitor of metalloproteinase 2 in human tumor cell line. J. Biol. Chem. 276, 11368-11378
21 Crameri, A., S. Raillard, E. Bermudez, W. P. Stemmer (1998), DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288-291   DOI   ScienceOn
22 McDonnell, S., V. Chaudhry, J. Mansilla-Soto, Z. S. Zeng, W. Shu, and J. G. Guillem (1999), Metastatic and non-metastatic colorectal cancer (CRC) cells induce host metalloproteinase production in vivo. Clin. Exp. Metastasis 17, 341-349
23 Miyazaki, K., P. L. Wintrode, R. A. Grayling, D. N. Rubingh, and F. Arnold (2000), Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297, 1015-1026   DOI   ScienceOn
24 Fassina, G., N. Ferrari, C. Brigati, R. Benelli, L. Santi, D. M. Noonan, and A. Albini (2000), Tissue inhibitors of metalloproteinases: regulation and biological activities. Clin. Exp. Metastasis 18, 111-120   DOI
25 Maxwell, K. L., A. K. Mittermaier, J. D. Forman-Kay, and A. R. Davidson (1999), A simple in vivo assay for increased protein solubility. Protein Sci. 8, 1908-1911   DOI   ScienceOn
26 Itoh, T., M. Tanioka, H. Matsuda, H. Nishimoto, T. Yoshioka, R. Suzuki, and M. Uehira (1999), Experimental metastasis is suppressed in MMP-9-deficient mice. Clin. Exp. Metastasis 17, 177-181   DOI   ScienceOn
27 Zhang, J. H., G. Dawes, and W. P. Stemmer (1997), Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504-4509
28 Shao, Z., H. Zhao, L. Giver, and F. H. Arnold (1997), Randompriming in vitro recombination: an effective tool for directed evolution. Nucleic Acids. Res. 26, 681-683   DOI
29 Cochran, J. R., C. Y. Kim, S. M. Lippow, B. Rao, and K. D. Wittrup (2006), Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng. Des. Sel. 19, 245-253   DOI   ScienceOn
30 Aguinaldo, A. M., and F. Arnold (2003), Staggered extension process (StEP) in vitro recombination. Methods Mol. Biol. 192, 105-110
31 Waldo, G. S. (2003), Genetic screens and directed evolution for protein solubility. Curr. Opi. Chem. BioI. 7, 33-38   DOI   ScienceOn
32 Kawate, H., D. M. Landis, and L. Loeb (2002), Distribution of mutations in human thymidylate syntltase yielding resistance to 5-fluorodeoxyuridine. J. BioI. Chem. 277, 36304-36311   DOI   ScienceOn
33 Stemmer, W. P. (1994), DNA shuffling by random fragmentation and reassembly: In vitro recombirtation for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747-10751
34 Park, Y. H., H. S. Ryu, D. S. Choi, K. H. Chang, D. W. Park, and C. K. Min (2003), Effects of hepatocyte growth factor on the expression of matrix metalloproteinases and their tissue inhibitors during the endometrial cancer invasion in a three-dimensional coculture. Int. J. Gynecol. Cancer 13, 53-60   DOI   ScienceOn
35 Zhao, H., L. Giver, Z. Shao, J. A. Affholter, and F. H. Arnold (1998), Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotech. 16, 258-261   DOI   ScienceOn
36 Waldo, G. S., B. M. Standish, J. Berendzen, and T. C. Terwilliger (1999), Rapid protein folding assay using green fluorescent protein. Nat. Biotech. 17, 691-695   DOI   ScienceOn
37 Lesley, S. A., J. Graziano, C. Y. Cho, M. W. Knuth, H. E. Klock (2002), Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein engineering 15, 153-160   DOI