DOI QR코드

DOI QR Code

Expression and Isolation of Limonoid UDP-glucosyltransferase, a Bitterness-reducing Enzyme, in E.coli

감귤의 고미제거 효소인 limonoid UDP-glucosyltransferase의 대장균 내에서의 발현과 이의 분리

  • K.Cho, So-Mi (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Kim, Young-Mee (Department of Medicin, School of Applied Marine Science, Jeju National University) ;
  • Kim, Min-Young (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Lee, Do-Seung (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Kim, Jae-Hoon (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Park, Se-Pill (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Riu, Key-Zung (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Lee, Dong-Sun (Faculty of Biotechnology, College of Applied Life Science, Jeju National University)
  • 김소미 (제주대학교 생명자원과학대학 생명공학부) ;
  • 김영미 (제주대학교 아열대열대생물 유전자 은행센터) ;
  • 김민영 (제주대학교 생명자원과학대학 생명공학부) ;
  • 이도승 (제주대학교 생명자원과학대학 생명공학부) ;
  • 김재훈 (제주대학교 생명자원과학대학 생명공학부) ;
  • 박세필 (제주대학교 생명자원과학대학 생명공학부) ;
  • 류기중 (제주대학교 생명자원과학대학 생명공학부) ;
  • 이동선 (제주대학교 생명자원과학대학 생명공학부)
  • Received : 2010.10.11
  • Accepted : 2011.02.11
  • Published : 2011.04.30

Abstract

Limonoids are abundant as bitter taste in citrus fruit and other plants. Interestingly. limonoid UDP-glucosyltransferase (LUGT) effectively ameliorates the bitterness from limonoid. The high level of LUGT expression in Escherichia coli can result in the formation of insoluble aggregates known as inclusion bodies. We isolated the soluble LUGT protein when this inclusion body was renaturated with ${\beta}$-cyclidextrin treatment after protein denaturation by urea. Our present results suggest that the isolation of LUGT from inclusion body in cells leads to shed light to characterize the enzyme for food industry purposes.

Limonoid는 항바이러스 및 항균제로써의 치료적인 목적으로 널리 연구되고 있는 성분으로 감귤에서 풍부하게 존재한다. 그러나 성분 자체의 쓴맛으로 인하여 기호성이 저하되므로 이를 해결하는 노력이 필요하며 제품 개발이 요구되고 있는 실정이다. 이러한 쓴맛을 제거할 수 있는 훌륭한 효소로써 LUGT가 주목되고 있으며, 이에 효소의 특성화 연구를 위하여 분리 및 정제를 시도하였다. Plasmid vector인 pET30a(+)을 사용하여 대장균에서 효소 생성 을 위한 최적 발현조건을 검토한 결과, 0.5 mM IPTG 조건에서 $37^{\circ}C$에서 5시간동안 배양하는 것이 최적 과발현 조건이었다. 그러나 세포내 효소 발현은 불용성의 inclusion body로 존재하므로 단백질 변성제인 urea와 재생제인 ${\beta}$-cyclodextrin을 사용하여 순수분리가 가능하였다. 이러한 방법은 LUGT의 당단백질의 특성연구는 물론 이를 이용한 제주 감귤의 고부가가치를 위한 기초연구에 많은 도움을 줄 것으로 판단된다.

Keywords

References

  1. Ito Y, Hagihara S, Matsuo I, Totani K (2005) Structural approaches to the study of oligosaccharides in glycoprotein quality control. Curr Opin Struct Biol, 15, 481-489 https://doi.org/10.1016/j.sbi.2005.08.012
  2. Cho SK, Cummings RD (1997) A soluble form of α1,3-galactosyltransferase functions within cells to galactosylate glycoproteins. J Biol Chem, 272, 13622-13628 https://doi.org/10.1074/jbc.272.21.13622
  3. Bowles D, Isayenkova J, Lim E-K, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol, 8, 254-263 https://doi.org/10.1016/j.pbi.2005.03.007
  4. Yazaki K, Inushima K, Kataoka M, Tabata M (1995) Intracellular localization of UDPG:p-hydroxybenzoate glucosyltransferase and its reaction product in Lithospermum cell cultures. Phytochemistry, 38, 1127-1130 https://doi.org/10.1016/0031-9422(94)00821-A
  5. Achnine L, Huhman DV, Tarag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J, 41, 875-887 https://doi.org/10.1111/j.1365-313X.2005.02344.x
  6. Anhalt S, Weissenbock G (1992) Subcellular localization of luteolin glucuronides and related enzymes in rye mesophyll. Planta, 187, 83-88
  7. Ibrahim RK (1992) Immunolocatozation of flavonoid conjugates and their enzymes. In: Stafford HA, Ibrahim RK, eds. Phenolic metabolism in plants. NY: Plenum Press, 25-61
  8. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: transquilizers and stimulant controllers. Planta, 213, 164-174 https://doi.org/10.1007/s004250000492
  9. Ruberto G, Renda A, Tringali C, Napoli EM, Simmonds MSJ (2002) Citrus limonoids and their semi-synthetic derivatives as anti-feedant agents against Spodoptera frugiperda larvae. A structureactivity relationship study. J Agric Food Chem, 50, 6766-6774 https://doi.org/10.1021/jf020607u
  10. Miller EG, Fanous R, Rivera-Hidalgo F, Binnie WH, Hasegawa S (1989) The effect of citrus limonoids on hamster buccal pouch carcinogenesis. Carcinogenesis, 10, 1535-1537 https://doi.org/10.1093/carcin/10.8.1535
  11. Hasegawa S, Bennett RD, Herman Z, Fong CH, Peter OU (1989) Limonoid glucosides in Citrus. Phytochemistry, 28, 1717-1720 https://doi.org/10.1016/S0031-9422(00)97831-2
  12. Kitaab M, Hirata Y, Moriguchi T, Endo-Inagaki T, Matsumoto R, Hasegawa S, Suhayda CG, Omura M (2000) Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Lett, 469, 173-178 https://doi.org/10.1016/S0014-5793(00)01275-8
  13. Nomura Y, Ikeda M, Yamaguchi N, Aoyama Y, Akiyoshi K (2003) Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett, 553, 271-276 https://doi.org/10.1016/S0014-5793(03)01028-7