• Title/Summary/Keyword: solitons

Search Result 108, Processing Time 0.022 seconds

Numerical simulations on the amplitude and phase dependent propagation characteristics of dark solitons (진폭과 위상에 따른 어두운 솔리톤의 진행특성에 대한 전산시늉)

  • 김광훈;윤선현;문희종;임용식;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.238-244
    • /
    • 1994
  • We numerically studied on the dark solitons propagation for initial amplitude and phase shapes in the normalized nonlinear Schr dinger equation(NLSE) which describes the propagations of optical solitons. As the propagation distance increases, odd dark solitons evolve into a black soliton and pairs of gray solitons which have a different sign of blackness, and even dark solitons evolve into pairs of gray solitons without black solitons. When there exists a black soliton and a gray soliton, even though the initial amplitude shape is same, the sign of blackness of a gray solitons determines whether they would collide or not. We could see that the energy of dark solitons evolve into a couple of solitons of different blackness since there exists a continuous range of dark solitons with arbitrary blackness parameter, and this phenomenon was more clearly seen from the change of phase shapes from that of amplitude shapes. hapes.

  • PDF

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

ON A CLASSIFICATION OF WARPED PRODUCT SPACES WITH GRADIENT RICCI SOLITONS

  • Lee, Sang Deok;Kim, Byung Hak;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.627-636
    • /
    • 2016
  • In this paper, we study Ricci solitons, gradient Ricci solitons in the warped product spaces and gradient Yamabe solitons in the Riemannian product spaces. We obtain the necessary and sufficient conditions for the Riemannian product spaces to be Ricci solitons. Moreover we classify the warped product space which admit gradient Ricci solitons under some conditions of the potential function.

ON GRADIENT RICCI SOLITONS AND YAMABE SOLITONS

  • Choi, Jin Hyuk;Kim, Byung Hak;Lee, Sang Deok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • In this paper, we consider gradient Ricci solitons and gradient Yamabe solitons in the warped product spaces. Also we study warped product space with harmonic curvature related to gradient Ricci solitons and gradient Yamabe solitons. Consequently some theorems are generalized and we derive differential equations for a warped product space to be a gradient Ricci soliton.

Some Geometric Properties of η-Ricci Solitons on α-Lorentzian Sasakian Manifolds

  • Shashikant, Pandey;Abhishek, Singh;Rajendra, Prasad
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.737-749
    • /
    • 2022
  • We investigate the geometric properties of 𝜂*-Ricci solitons on α-Lorentzian Sasakian (α-LS) manifolds, and show that a Ricci semisymmetric 𝜂*-Ricci soliton on an α-LS manifold is an 𝜂*-Einstein manifold. Further, we study 𝜑*-symmetric 𝜂*-Ricci solitons on such manifolds. We prove that 𝜑*-Ricci symmetric 𝜂*-Ricci solitons on an α-LS manifold are also 𝜂*-Einstein manifolds and provide an example of a 3-dimensional α-LS manifold for the existence of such solitons.

*-CONFORMAL RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Tarak Mandal;Avijit Sarkar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.865-880
    • /
    • 2023
  • The main intention of the current paper is to characterize certain properties of *-conformal Ricci solitons on non-coKähler (𝜅, 𝜇)-almost coKähler manifolds. At first, we find that there does not exist *-conformal Ricci soliton if the potential vector field is the Reeb vector field θ. We also prove that the non-coKähler (𝜅, 𝜇)-almost coKähler manifolds admit *-conformal Ricci solitons if the potential vector field is the infinitesimal contact transformation. It is also studied that there does not exist *-conformal gradient Ricci solitons on the said manifolds. An example has been constructed to verify the obtained results.