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Abstract. In the present paper, we study generalized Ricci solitons on N(κ)-contact

metric manifolds, in particular, we consider when the potential vector field is the concircu-

lar vector field. We also consider generalized gradient Ricci solitons, and verify our results

with an example.

1. Introduction

The notion of a κ-nullity distribution (in brief, KND) on a Riemannian manifold
(RM, in short) was coined by Tanno [12]. A KND in a RM M is described by

N(κ) : q −→ Nq(κ) ={V3 ∈ TqM : R(V1, V2)V3

=κ[g(V2, V3)V1 − g(V1, V3)V2]},

for vector fields V1, V2 ∈ TqM, κ being a real number, and TqM being the tangent
space of M at q. A (2m+1)-dimensional contact metric manifold (CMM, in short)
is called N(κ)-contact metric manifold (NCMM, in short) if the Reeb vector field θ
satisfies KND. So, for a NCMM, we have

(1.1) R(V1, V2)θ = κ{τ(V2)V1 − τ(V1)V2}.

For κ = 1, the manifold is a Sasakian manifold and when κ = 0 it is locally
isometric to the product of an m-dimensional manifold of scalar curvature 4 with a
flat (m+1)-dimensional manifold, providedm>1. If m = 1 and κ = 0, the manifold
is flat [1]. NCMMs have been studied by many authors [1, 2, 3, 5].
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Hamilton [8] introduced the famous geometric flow, named as Ricci flow, which
is a kind of pseudo parabolic heat equation defined on a RM as

(1.2)
∂g(t)

∂t
= −2Ric(t),

where g and Ric indicate, respectively, the Riemannian metric and the (0, 2) Ricci
tensor.

A Ricci soliton (RS, in short) is a fixed point of Ricci flow (RF, in short) equation
(1.2). At the same time it is also a generalization of the Einstein metric. A RS on
a (2m+ 1)-dimensional RM is given by

(LEg)(V1, V2) + 2Ric(V1, V2) = 2λg(V1, V2),

L being the Lie-derivative operator and λ is a constant. The nature of a RS is
described by the value of λ, that means, a RS is shrinking if λ>0, it is steady if
λ = 0, for λ<0 it is expanding. For more about RSs, one can see the papers [11, 13].

In [10], the authors extended the idea of an RS to a generalized Ricci soliton
(GRS, in short). On a RM it is given by

(1.3) (LEg)(V1, V2) + 2aRic(V1, V2) + 2bE♯(V1)E
♯(V2) = 2λg(V1, V2),

where a, b, λ ∈ R and E♯ is the canonical 1-form related with E i.e., E♯(V1) =
g(V1, E). Similar to a RS, a GRS is shrinking or steady or expanding according as
λ takes positive, zero or negative value. Here the potential vector field (PVF, in
short) is termed as

• Homothetic vector field if a = b = 0
• Killing vector field if a = b = λ = 0

and the equation (1.3) is called

• Ricci soliton when a = 1 and b = 0
• Einstein-Weyl equation when a = 1

n−1 and b = 1.
GRS on different types of RS have been discussed by many authors like Ghosh and
De [6, 7], Kumara, Naik and Venkatesha [9].

If the PVF be taken as the gradient of a smooth function, the GRS reduces into
generalized gradient Ricci soliton (GGRS, in short). Thus the GGRS on a RM M

is given by

(1.4) ∇2ψ(V1, V2) + aRic(V1, V2) + b(V1ψ)(V2ψ) = λg(V1, V2),

where ∇2 being the Hessian operator and ψ is a smooth function on M.
In a RM a vector field E is called concircular vector field [4] if

(1.5) ∇V1
E = fV1,

for any vector field V1 on the manifold, where ∇ is the Levi-Civita connection and
f is a smooth function.
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The paper is embodied as follows: after a brief review of literature, we give some
basic definition and curvature properties of NCMMs in the Section 2. In Section 3,
we deduce certain characterizations of GRSs on NCMMs. The next section deals
with generalized gradient Ricci solitons. In the last section, we give an example to
support our results.

2. Preliminaries

A (2m + 1)-dimensional differentiable manifold N endowed with a tensor field
φ of type (1, 1), a vector field θ, a 1-form τ satisfying [5]

(2.1) φ2(V1) = −V1 + τ(V1)θ, τ(θ) = 1,

for any vector field V1 ∈ χ(N), the set of all vector fields on N, is known as an
almost contact manifold. An almost contact manifold is called almost contact metric
manifold if it admits a Riemannian metric g such that

(2.2) g(φV1, φV2) = g(V1, V2)− τ(V1)τ(V2).

As a consequence of (2.2) and (2.3), we get the following:

φθ = 0, g(V1, θ) = τ(V1), τ(φV1) = 0,

g(φV1, V2) = −g(V1, φV2),

(∇V1
τ)(V2) = g(∇V1

θ, V2),

for any vector fields V1, V2 ∈ χ(N).
An almost contact metric manifold is called CMM whenever the almost contact

metric structure (φ, θ, τ, g) satisfies the following condition [5]

g(V1, φV2) = dτ(V1, V2),

for every vector fields V1, V2 ∈ χ(N). For a CMM N, we determine a symmetric
(1, 1)-tensor field h by h = 1

2Lθφ, Lθφ indicates the Lie differentiation of φ in the
direction θ and satisfying the following conditions

hθ = 0, hφ+ φh = 0, tr(h) = tr(hφ) = 0,

(2.3) ∇V1
θ = −φV1 − φhV1.

For a NCMM N of dimension 2m+ 1,m ≥ 1, we have [5]

h2 = (κ− 1)φ2,

(2.4) (∇V1
φ)(V2) = g(V1 + hV1, V2)θ − τ(V2)(V1 + hV1),
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(2.5) R(V1, V2)θ = κ{τ(V2)V1 − τ(V1)V2},

R(θ, V1)V2 = κ{g(V1, V2)θ − τ(V2)V1},

Ric(V1, V2) =2(m− 1){g(V1, V2) + g(hV1, V2)}

+{2mκ− 2(m− 1)}τ(V1)τ(V2),

(2.6)

(2.7) Ric(V1, θ) = 2mκτ(V1),

(2.8) (∇V1
τ)(V2) = g(V1 + hV1, φV2),

(∇V1
h)(V2) ={(1− κ)g(V1, φV2) + g(V1, hφV2)}θ

+τ(V2){h(φV1 + φhV1)},

(2.9)

(2.10) r = 2m(2m− 2 + κ),

for every vector fields V1, V2, ∈ χ(N); R, Ric and r are the Riemannian curvature,
Ricci tensor and scalar curvature, respectively.
Lemma 2.1. In a (2m+1)-dimensional NCMM N, the following holds

(2.11)
(∇V1

hφ)V2 =(κ− 1)(g(V1, V2)θ − 2τ(V1)τ(V2)θ

+τ(V2)V1)− g(V1, hV2)θ − τ(V2)hV1,

for any vector fields V1, V2 on the manifold.

Proof. By a straightforward calculation, we obtain

(2.12) (∇V1
hφ)V2 = (∇V1

h)φV2 + h(∇V1
φ)V2.

Using (2.4) and (2.9) in the previous relation, the desired result is obtained.

3. Generalized Ricci Solitons on N(κ)-contact Metric Manifolds

Let N be a NCMM of dimension (2m+ 1) admitting generalized Ricci soliton.
Applying covariant derivative on (1.3) in the direction V3, we obtain

(3.1)
(∇V3

LEg)(V1, V2) = − 2a(∇V3
Ric)(V1, V2)− 2b(g(∇V3

E, V1)E
♯(V2)

+E♯(V1)g(∇V3
E, V2)).

According to Yano [14], we infer

(LE∇V3
g −∇V3

LEg −∇[E,V3]g)(V1, V2) =− g((LE∇)(V3, V1), V2)

−g((LE∇)(V3, V2), V1).
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As ∇g = 0 and from the above equation, we have

(∇V3
LEg)(V1, V2) = g((LE∇)(V3, V1), V2) + g((LE∇)(V3, V2), V1).

Due to symmetry property of LE∇, the above equation reduces to

(3.2)
2g((LE∇)(V3, V1), V2) =(∇V3

LEg)(V1, V2) + (∇V1
LEg)(V3, V2)

−(∇V2
LEg)(V3, V1).

Using (3.1) in (3.2), we get

(3.3)

2g((LE∇)(V3, V1), V2) =− 2a[(∇V3
Ric)(V1, V2) + (∇V1

Ric)(V3, V2)

−(∇V2
Ric)(V3, V1)]− 2b[g(∇V3

E, V1)E
♯(V2)

+E♯(V1)g(∇V3
E, V2) + g(∇V1

E, V3)E
♯(V2)

+E♯(V3)g(∇V1
E, V2)− g(∇V2

E, V3)E
♯(V1)

−E♯(V3)g(∇V2
E, V1)].

Assuming that the PVF E as concircular vector field. Then using (1.5) in (3.3), we
get

(3.4)
2g((LE∇)(V3, V1), V2) =− 2a[(∇V3

Ric)(V1, V2) + (∇V1
Ric)(V3, V2)

−(∇V2
Ric)(V3, V1)]− 4bfg(V3, V1)E

♯(V2).

Differentiating (2.6) covariantly with respect to V3 and utilizing (2.3), one obtains

(3.5)
(∇V3

Ric)(V1, V2) =2κ(g(V3, φV1)τ(V2)− g(V3, φV2)τ(V1))

+2mκ(g(V3, hφV1)τ(V2) + g(V3, hφV2)τ(V1)).

Applying (3.5) in (3.4), we obtain

(3.6) g((LE∇)(V3, V1), V2) = −4maκg(V3, hφV1)τ(V2)− 2bfg(V3, V1)E
♯(V2),

which implies

(3.7) (LE∇)(V3, V1) = −4maκg(V3, hφV1)θ − 2bfg(V3, V1)E.

Differentiating above equation covariantly with respect to V2 and applying (1.5),
we infer

(3.8)

(∇V2
LE∇)(V3, V1) =− 4maκ(g(V3, (∇V2

hφ)V1)θ

−g(V3, hφV1)(φV2 + φhV2))

−2b(V2f)g(V3, V1)E − 2bf2g(V3, V1)V2.

Due to Yano ([14], p-23), we have

(3.9) (LER)(V1, V2)V3 = (∇V1
LE∇)(V2, V3)− (∇V2

LE∇)(V1, V3).
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Applying (3.8) in the above equation, we have

(3.10)

(LER)(V1, V2)V3 =− 4maκ(g((∇V1
hφ)V2 − (∇V2

hφ)V1, V3)θ

−g(hφV2, V3)(φV1 + φhV1)

+g(hφV1, V3)(φV2 + φhV2))

−2b(V1f)g(V3, V2)E + 2b(V2f)g(V3, V1)E

−2bf2(g(V2, V3)V1 − g(V1, V3)V2).

Using (2.11) in (3.10), we get

(3.11)

(LER)(V1, V2)V3 =− 4maκ((κ− 1)(g(V1, V3)τ(V2)θ

−g(V2, V3)τ(V1)θ)− g(hV1, V3)τ(V2)θ

+g(hV2, V3)τ(V1)θ − g(hφV2, V3)(φV1 + φhV1)

+ g(hφV1, V3)(φV2 + φhV2))

−2b(V1f)g(V3, V2)E + 2b(V2f)g(V3, V1)E

−2bf2(g(V2, V3)V1 − g(V1, V3)V2).

Setting V2 = V3 = θ in the above equation, we obtain

(3.12) (LER)(V1, θ)θ = −2b(V1f)E + 2b(θf)τ(V1)E − 2bf2(V1 − τ(V1)θ).

Taking Lie derivative of R(V1, θ)θ = κ(V1− τ(V1)θ) along the vector field E, we get

(3.13)
(LER)(V1, θ)θ =− κ((LEτ)(V1)θ − τ(V1)LEθ)

−R(V1,LEθ)θ −R(V1, θ)LEθ.

Putting V2 = θ in (1.3) and using (2.7), we infer

(3.14) (LEτ)(V1) = g(V1,LEθ)− 2(2maκ− λ)τ(V1)θ − 2bE♯(V1)E
♯(θ).

Applying (3.14) in (3.13), we have

(3.15)

(LER)(V1, θ)θ =− κ(g(V1,LEθ)− 2(2maκ− λ)τ(V1)θ

−2bE♯(V1)E
♯(θ)− τ(V1)LEθ)

−R(V1,LEθ)θ −R(V1, θ)LEθ.

Comparing (3.12) and (3.15), we obtain

(3.16)

R(V1,LEθ)θ +R(V1, θ)LEθ

=2b(V1f)E − 2b(θf)τ(V1)E

+2bf2(V1 − τ(V1)θ)− κ(g(V1,LEθ)

−2(2maκ− λ)τ(V1)θ − 2bE♯(V1)E
♯(θ)

−τ(V1)LEθ).
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Contracting the above equation, we get

(3.17)
Ric(LEθ, θ) =b(Ef)− b(θf)τ(E) + 2mbf2

+κ((2maκ− λ) + b(θ(E))2).

Using (2.7) in the above equation, we get

(3.18)
g(LEθ, θ) =

1

2mκ
[b(Ef)− b(θf)τ(E) + 2mbf2

+κ{(2maκ− λ) + b(τ(E))2}].

Again, putting V1 = V2 = θ in (1.3), we obtain

(3.19) g(LEθ, θ) = −λ+ 2maκ+ b(τ(E))2.

Comparing (3.18) and (3.19) and putting E = θ, we infer

(3.20) f2 =
(2m− 1)κ

2mb
(2maκ− λ+ b).

Thus we may assert the following theorem.
Theorem 3.1. If a (2m+1)-dimensional NCMM admits GRS where the PVF being

the concircular vector field, then f2 = (2m−1)κ
2mb (2maκ− λ+ b).

Let us consider the PVF be pointwise collinear with the Reeb vector field θ, i.e.,
E = ψθ, ψ being a smooth function on the manifold. Then, from (1.2), we have

(3.21)
ψg(∇V1

θ, V2) + (V1ψ)τ(V2) + ψg(V1,∇V2
θ)

+(V2ψ)τ(V2) + 2aRic(V1, V2) + 2bψ2τ(V1)τ(V2) = 2λg(V1, V2).

Using (2.3) in (3.21), we infer

(3.22)
−2ψg(φhV1, V2) + (V1ψ)τ(V2) + (V2ψ)τ(V1) + 2aRic(V1, V2)

+2bψ2τ(V1)τ(V2) = 2λg(V1, V2).

Setting V2 = θ in the foregoing equation, we obtain

(3.23) (V1ψ) + (θψ)τ(V1) = 2(λ− 2maκ− bψ2)τ(V1).

Again, putting V1 = θ in the above equation, we have

(3.24) (θψ) = λ− 2maκ− bψ2.

Applying (3.24) in (3.23), we get

(3.25) (V1ψ) = (λ− 2maκ− bψ2)τ(V1),

which implies

(3.26) dψ = (λ− 2maκ− bψ2)τ.
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Taking exterior derivative if (3.26) and then taking wedge product with τ , we get

(3.27) (λ− 2maκ− bψ2)τ ∧ dτ = 0.

Since τ ∧ dτ is the volume element, τ ∧ dτ 6= 0. Thus, from (3.27), we infer

(3.28) ψ2 =
λ− 2maκ

b
,

which indicates that ψ is a constant. Thus we assert the following
Theorem 3.2. If a (2m+1)-dimensional NCMM admits GRS and the PVF is

pointwise collinear with the Reeb vector field, then the potential vector field is a

constant multiple of the Reeb vector field.

Let us suppose that the PVF be the Reeb vector field θ, then from (1.2), we
infer

(3.29) −2g(φhV1, V2) + 2aRic(V1, V2) + 2bτ(V1)τ(V2) = 2λg(V1, V2).

Assume an orthonormal frame field {ei}, i = 1, 2, . . . , (2m+ 1) at any point on the
manifold and contracting V1 and V2, yields

(3.30) −tr(φh) + ar + b = (2m+ 1)λ.

Since tr(φh) = 0, we obtain from above equation

(3.31) 2ma(2m− 2 + κ) + b = (2m+ 1)λ,

where we used (2.10). Again putting V1 = V2 = θ in (3.29) and using (2.7), we have

(3.32) 2maκ+ b = λ.

Comparing (3.31) and (3.32), we get

(3.33) κ = −
b

2ma
−
m− 1

m
.

Thus we may assert the following
Theorem 3.3. If a (2m+1)-dimensional N(κ)-contact metric manifold admits

generalized Ricci soliton and the potential vector is the Reeb vector field θ, then

κ = − b
2ma − m−1

m .

4. Generalized Gradient Ricci Solitons on N(κ)-contact Metric Manifolds

In the current section we investigate the behaviour of generalized gradient Ricci
solitons on N(κ)-contact metric manifolds.

Let us consider that a (2m+1)-dimensional NCMM admitting generalized gra-
dient Ricci solitons. Then equation (1.4) can be written as

(4.1) ∇V1
Dψ = λV1 − aQV1 − b(V1ψ)Dψ,
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where D indicates the gradient operator. With the help of (2.6), the above equation
reduces to

(4.2)
∇V1

Dψ =λV1 − 2a(m− 1)(V1 + hV1)

−a(2mκ− 2(m− 1))τ(V1)θ − b(V1ψ)Dψ.

Differentiating covariantly of the equation (4.2), we infer

(4.3)

∇V2
∇V1

Dψ =(λ− 2a(m− 1))∇V2
V1 − 2a(m− 1)∇V2

hV1

−a(2mκ− 2(m− 1))(∇V2
τ(V1)θ + τ(V1)∇V2

θ)

−b(V2(V1ψ))Dψ − b(V1ψ)∇V2
Dψ.

Altering V1 and V2 in the foregoing equation, we have

(4.4)

∇V1
∇V2

Dψ =(λ− 2a(m− 1))∇V1
V2 − 2a(m− 1)∇V1

hV2

−a(2mκ− 2(m− 1))(∇V1
τ(V2)θ + τ(V2)∇V1

θ)

−b(V1(V2ψ))Dψ − b(V2ψ)∇V1
Dψ.

Also, from (4.2), we get

(4.5)
∇[V1,V2]Dψ =(λ− 2a(m− 1))[V1, V2]− 2a(m− 1)h[V1, V2]

−a(2mκ− 2(m− 1))τ([V1, V2])θ − b([V1, V2]ψ)Dψ,

Using equations (4.3)-(4.5), we have

(4.6)

R(V1, V2)Dψ =− 2a(m− 1){(∇V1
h)V2 − (∇V2

h)V1}

−a(2mκ− 2(m− 1)){(∇V1
τ)(V2)θ − (∇V2

τ)(V1)θ

+τ(V2)∇V1
θ − τ(V1)∇V2

θ}

−b{(V2ψ)∇V1
Dψ − (V1ψ)∇V2

Dψ}.

Remembering (2.3), (2.8), (2.9) and (4.2), the above equation reduces to

(4.7)

R(V1, V2)Dψ =− 2a(m− 1){2(1− κ)g(V1, φV2)θ

+τ(V2)(h(φV1 + φhV1))− τ(V1)(h(φV2 + φhV2))}

−a(2mκ− 2(m− 1)){2g(V1, φV2 + hφV2)θ

+τ(V1)(φV2 + φhV2)− τ(V2)(φV1 + φhV1)}

−b{−2a(m− 1)((V2ψ)(V1 + hV1)− (V1ψ)(V2 + hV2))

−a(2mκ− 2(m− 1))((V2ψ)τ(V1)θ − (V1ψ)τ(V2)θ)

+λ((V2ψ)V1 − (V1ψ)V2)}.

Taking inner product with θ, we have

(4.8)

g(R(V1, V2)Dψ, θ) =− 4a(m− 1)g(V1, φV2)

−2a(2mκ− 2(m− 1))g(V1, φV2 + hφV2)

−b(λ− 2amκ)((V2ψ)τ(V1)(V1ψ)τ(V2)).
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Again, taking inner product of (2.5) with Dψ, we get

(4.9) g(R(V1, V2)θ,Dψ) = κ((V1ψ)τ(V2)− (V2ψ)τ(V1)).

Equations (4.8) and (4.9) together give

(4.10)
(κ+ b(λ− 2amκ))((V2ψ)τ(V1)− (V1ψ)τ(V2))

=− 4a(m− 1)(1− κ)g(V1, φV2)− 2a(2mκ− 2(m− 1))g(V1, φV2 + hφV2).

Setting V2 = θ in (4.10), we infer

(4.11) (κ+ b(λ− 2amκ))((θψ)τ(V1)− (V1ψ)) = 0,

which indicates that either λ = 2amκ− κ
b or Dψ = (θψ)θ. Thus we conclude that

Theorem 4.1. If a (2m+ 1)-dimensional NCMM admits GGRS, then either λ =
2amκ− κ

b or the potential vector field is pointwise collinear with the characteristic

vector field θ.

5. Example

In [5], De at el. initiated an example of a N(κ)-contact metric manifold. Fol-
lowing that example we construct the following.

Let us consider the manifold M = {x1, x2, x3 ∈ R
3 : x3 6= 0} of dimension 3,

where (x1, x2, x3) are standard co-ordinates in R
3. We choose the vector fields W1,

W2 and W3 which satisfy

[W1,W2] = 3W3, [W1,W3] =W2, [W2,W3] = 2W1.

The Riemannian metric tensor g is considered as

g(Wi,Wi) = 1, i = 1, 2, 3

and
g(Wi,Wj) = 0, i 6= j.

The 1-form τ is defined by
τ(V ) = g(V,W1),

for every vector field V on M . The (1, 1) type tensor field φ is given by

φ(W1) = 0, φ(W2) =W3, φ(W3) = −W2.

Then we find that

τ(W1) = 1, φ2V1 = −V1 + τ(V1)W1,

g(φV1, φV2) = g(V1, V2)− τ(V1)τ(V2), dτ(V1, V2) = g(V1, φV2),

for every vector fields V1, V2 on M . Thus (φ,W1, τ, g) defines a contact structure.
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Due to Koszul’s famous formula, we obtain the following

∇W1
W1 = 0, ∇W1

W2 = 0, ∇W1
W3 = 0,

∇W2
W2 = 0, ∇W2

W1 = −3W3, ∇W2
W3 = 3W1,

∇W3
W3 = 0, ∇W3

W1 = −W2, ∇W3
W2 =W1.

From the above expressions of ∇, we obtain

hW1 = 0, hW2 = 2W2, hW3 = −2W3.

We also have

R(W1,W2)W2 = −3W1, R(W2,W1)W1 = −3W2, R(W2,W3)W3 = 3W2,

R(W3,W2)W2 = 3W3, R(W1,W3)W3 = −3W1, R(W3,W1)W1 = −3W3,

R(W1,W2)W3 = 0, R(W2,W3)W1 = 0, R(W1,W3)W2 = 0.

Thus the manifold is an N(κ)-contact metric manifold with κ = −3.
On contraction of curvature tensor, we infer

Ric(W1,W1) = −6, Ric(W2,W2) = 0, Ric(W3,W3) = 0.

The scalar curvature r of the manifold is given by

r = Ric(W1,W1) +Ric(W2,W2) +Ric(W3,W3) = −6.

Let the potential vector field E =W1, then

(LW1
g)(W1,W1) = 0, (LW1

g)(W2,W2) = 0, (LW1
g)(W3,W3) = 0.

The above data indicates that the given manifold admits generalized Ricci soliton
with λ = 0 and hence the soliton is steady type. Also, from (1.3), we see that 6a = b
and these data satisfy equation (3.33). Hence Theorem 3.3 is verified.

Acknowledgements. The authors are thankful to the referee for his/her valuable
suggestions towards the improvement of the paper.
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