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k-ALMOST YAMABE SOLITONS ON KENMOTSU
MANIFOLDS

KRISHNENDU DE* AND UDAY CHAND DE

Abstract. In this current article, we intend to investigate k-almost Yam-
abe and gradient k-almost Yamabe solitons inside the setting of three-
dimensional Kenmotsu manifolds.

1. Introduction

In [11] several years ago, Hamilton publicized the concept of Yamabe soliton.
According to the author, a Riemannian metric g of a complete Riemannian
manifold (M™, g) is called a Yamabe soliton if it obeys

(1) SEwg=(-)g,

where W, A, r and £ indicates a smooth vector field, a real number, the well-
known scalar curvature and Lie-derivative respectively. Here, W is termed as
the soliton field of the Yamabe soliton. A Yamabe soliton is called shrinking
or expanding according as A > 0 or A < 0, respectively whereas steady if A
= 0. Yamabe solitons have been investigated by several geometers in various
contexts (see, [2], [3], [10], [17], [20]). The so called Yamabe soliton becomes
the almost Yamabe soliton if A is a C* function. In [1], Barbosa and Ribeiro
introduced the above notion which was completely classified by Seko and Maeta
in [16] on hypersurfaces in Euclidean spaces.

The Yamabe soliton reduces to a gradient Yamabe soliton if the soliton field
W is gradient of a C* function v : M™ — R. In this occasion, from (1) we
have

(2) Vi = (r =Ny,

where V27 indicates the Hessian of 7. The idea of gradient Yamabe soliton was
generalized by Huang and Li [12] and named as quasi- Yamabe gradient soliton.
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According to Huang and Li, g ( Riemannian metric) obeys the equation

1
(3) Viy=—dy@dy+(r —A)g,

where A € R and m is a positive constant. If m = oo, the foregoing equation
reduces to Yamabe gradient soliton.

A few years ago in [14], taking A as a C°° function, Pirhadi and Razavi
investigated an almost quasi-Yamabe gradient soliton. They got a few fasci-
nating formulas and produce a necessary and sufficient condition under which
an arbitrary compact almost Yamabe soliton is necessarily gradient. Recently,
Chen [5] has studied almost quasi-Yamabe solitons within the context of almost
Cosymplectic manifolds.

According to Chen [4], a Riemannian metric is said to be a k-almost Yamabe
soliton if there exists a smooth vector field W, a C'*° function A and a nonzero
function k such that
(4) Ltwo=(-Ng
holds. We denote the k-almost Yamabe soliton by (g, W,k,\). If W = D+,
the previous equation reduces to gradient k-almost Yamabe soliton (g,~, k, A).
The k-almost Yamabe soliton is called closed if the 1-form W is closed. The
k-almost Yamabe soliton becomes trivial if W = 0, otherwise nontrivial. Fur-
thermore, when A = constant, the previous equation gives the k- Yamabe
soliton.

The above works motivate us to study k-almost Yamabe soliton in 3-dimensional
Kenmotsu manifolds. Precisely, we prove the following results:

Theorem 1.1. There does not exist k-almost Yamabe soliton with soli-
ton field pointwise collinear with the characteristic vector field in a Kenmotsu
manifold M3.

For W being orthogonal to the characteristic vector field, we have

Theorem 1.2. If the metric of a three-dimensional Kenmotsu manifold M3
is a k-Yamabe soliton with W being orthogonal to £, then the manifold is of
constant sectional curvature —1 and the k-Yamabe soliton is expanding with
A= —6.

Theorem 1.3. If a Kenmotsu manifold M? admits a closed k-almost Yam-
abe soliton, then M?3 is isometric to a Euclidean space R3.

Theorem 1.4. There does not exist nontrivial k-almost gradient Yamabe
soliton on a Kenmotsu manifold M?3.

2. Preliminaries

Let M?"*+1 be a connected almost contact metric manifold endowed with
an almost contact metric structure (4,€,n,9), that is, ¢ is an (1,1)-tensor field,
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¢ is a vector field, n is a 1-form and g is a compatible Riemannian metric such
that

¢*(E) = —E +n(B),n(€) = 1,¢¢ = 0,1¢ =0,
9(E,§) =n(E)
for all E, F € T'(TM).
If the following condition is fulfilled in an almost contact metric manifold
(VER)F = g(¢E, F)§ — n(F)oE,
then M is called a Kenmotsu manifold [13], where V denotes the Levi-Civita
connection of g. From the antecedent equation it is clear that
() Vel =E—n(E)
and
(Ven)F = g(E, F) — n(E)n(F).
In addition, the curvature tensor R and the Ricci tensor S satisfy
R(E, F)§ =n(E)F —n(F)E,
R(, E)¢ = E —n(B)E,
S(E,€) = —2nn(E).
From [8], we know that for a Kenmotsu manifold M3
r+4

(© REF)Z = "Tg(F 2)E - 9B 2)F
2R g(E, 2n(B) ~ 9B, Z)n(F)¢
+n(F)n(Z2)E —n(E)n(Z)Fl,

(7 S(B,F) = [(r+ 2)g(E, F) ~ (r + 6)n(E)n(F)],

where S, R and r are the Ricci tensor, the curvature tensor and the scalar
curvature of the manifold respectively. Kenmotsu manifolds have been studied
by several authors such as Pitis [15], De and De ([6], [7]) De, Yildiz and Yaliniz
[9] and many others.

Definition 2.1. A vector field W on an n dimensional Riemannian manifold
(M, g) is said to be conformal if
(8) £wg = 2pg,
p being the conformal coefficient. If the conformal coefficient is zero then the
conformal vector field is a Killing vector field.

In the following we write p = T;)‘. Therefore we have the subsequent
lemma:




118 K. De and U.C. De

Lemma 2.2 ([19]). On an 2n + 1-dimensional Riemannian manifold en-
dowed with a k-almost Yamabe soliton, the following relations are satisfied:

(LwSIE,F) = —(2n—1)g(VeDp, F) — (Ap)g(E, F),
Lwr = —2pr—4nlAp

for E,F € X(M), D being the gradient operator and A = divD being the
Laplacian operator of g.

3. Proofs of Theorems

3.1. Proof of Theorem 1.1

Here we suppose that the potential vector field W is pointwise collinear
with the characteristic vector field & (i.e., Z = ¢£, where ¢ is a function on M).
Then from (4) we derive

9) k{g(Vecg, F) + g(Vec, E)} = 2(r — A)g(E, F).
Utilizing (5) in (9), we get

(10) 2kelg(E, F) — n(E)n(F)] + (Ec)n(F) + (Fe)n(E)
—2(r—MNg(E,F)=0.
Replacing F' by £ in (10) gives

(11) (Be) + (€)n(E) — 2(r — \n(E) = 0.
Putting F = £ in (11) yields

(12) Ec=(r—M\).

Substituting the value of &c in (11) we infer

(13) de = (r —M)n.

Applying d on (13) and using Poincare lemma d* =0, we have

(14) (r — AN)dn + (dr)n — (d\)n = 0.

Taking wedge product of (14) with 7, we obtain

(15) (r—XnAdn=0.

Since n A dn # 0 , we infer
(16) r—A=0.

Utilizing (16) in (13) gives dc = O i.e., ¢ =constant. Then (4) yields £¢g =0
i.e., £ is Killing vector field. But in a Kenmotsu manifold we know that £ can
never be a Killing vector field by (5). This finishes the proof.
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3.2. Proof of Theorem 1.2

From (4) we have
g(g(VEW, F)+g(W,VeW))=(r—Xg(E,F) forall E,F.

Letting £ = F' = & gives r = A since W is orthogonal to £ and Equation (5)
implies V¢€ = 0. Since X is constant, by [20, Lemma 3.2] we know 7 = A = —6.
Further, it follows from (6) that R(E,F)Z = —[g(F,Z)E — g(E, Z)F] for all
vector fields E, F,Z. This means that M? is of constant sectional curvature
—1. This completes the proof.

3.3. Proof of Theorem 1.3

Lie differentiating (7) along W and utilizing Lemma 2.1, we have

—29(VeDp, F) = 2(Ap)g(E, F)

= Lwrlg(E, F) —n(E)n(F)] + (r + 2)(£wg)(E, F)

(7“ +6)(£Lwn)(E)n(F) — (r 4 6)n(E)(£wn)(F)
—(2pr + 44p)[g(E, F) — n(E)n(F)] + 2(r + 2)g(E, F)

—(7” +6)[20m(E) + g(E, £w&)In(F) — (r + 6)[2on(F) + g(F, £w&)|n(E)
= —4(Ap = p)g(E, F) = (2pr — 4Ap + 24p)n(E)n(F)
—(r+6)[g(E, Lw&)n(F) + g(F, £w&)n(E)],

from which we get

VeDp = (Ap—2p)E — (pr —2Ap+12p)n(E)¢
(17) +(5 + 3)9(B, £w€)E + n(E) £we].
Now setting E = ¢ yields
(18) VeDp = (=5 = Do+ Tp)¢ + (5 +3) £

Let us assume that (g, W, k, A) is a closed k-almost Yamabe soliton. Then from
(4) we can easily get VgW = pE. Thus utilizing (5) we infer

(19) Lw§ =W —n(W)§ - pt.
Moreover, for any vector fields E, F', we easily find that
(20) R(E,F)W =E(p)F — F(p)E.

Contracting the previous equation over F, we have QW = —2Dp. Now differ-
entiating the above expression along £ gives V¢ Dp = p€, since Q¢ = —2€ in a
3-dimensional Kenmotsu manifold. Hence from (18) we obtain

r
(21) (5 + 3 = n(F)E] = (=Ap + 3p)¢.
This gives Ap = 3p.
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Substituting the above value and (19) into (17) yields
(22) VeDp = pE.

Therefore, from [18, Theorem 2], we conclude that M? is isometric to a Eu-
clidean space R".

3.4. Proof of Theorem 1.4

Let us consider a k-almost Yamabe gradient soliton (g,7,k,A) on a Ken-
motsu manifold M3 . Then equation (4) can be written as

(23) kEVgDy = (r— A)F.
Executing the covariant derivative of (23) along E, we obtain

kVpVeDy = (E(r— A))F+(r— \NVgF

(24) —%u%ﬂr—Aﬂ?
Exchanging E and F in (24), we get

EVeVeDy = (F(r— A)E+ (r— A\)VeE
(25) f%(Fk)(rf NE
and
(26) Vs, 5 Dy = (r— NE, Fl.

Utilizing (23)-(26) and together with R(E, F)W = VgVgW —Vrp VgW —
Vig,nW, we infer

E°R(E, F)Dy = k[{E(r—\}F]—k[{F(r —\)}E]

(27) —(Ek)(r = NF + (Fk)(r — \)E.
Executing the inner product of (27) with £ yields
k*g(R(E, F) Dv,&) = K[{E(r —X)}n(F)] = k[{F(r — X)}n(E)]
(28) —(Ek)(r = \n(F) + (FE)(r — \)n(E).
Again, we obtain from relation (5) that
(29) k*g (R(E,F)Dy,€) = —k*{(Fy)n(E) — (Bv)n(F)}.

Combining equation (28) and (29), we get
RLE(r = M3n(F)] = K{E(r = A)n(E)]
—(ER)(r = \n(F) + (FF)(r = \)n(E)
(30) +E{(Fy)n(E) — (Ey)n(F)} =0
Now replacing F' by &, give that
(31) K2 [By — (&v)n(E)] = 0.



k-Almost Yamabe Solitons 121

Since k # 0, we immediately have

(32) Dy = (§7)¢-

From the preceding equation we can write dy = (£7v)n, where d stands for
the exterior differentiation. Taking exterior derivative of the previous equation
yields d?y = d(£y)An+(&v)dn. Utilizing Poincare lemma d? =0 in the foregoing
equation and then executing wedge product with n we obtain ({y)n A dn = 0.
Hence £y = 0, since n A dnp # 0 in a Kenmotsu manifold. Thus we conclude
that dy = 0 and therefore y is constant. This finishes the proof.
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