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k-ALMOST YAMABE SOLITONS ON KENMOTSU

MANIFOLDS

Krishnendu De∗ and Uday Chand De

Abstract. In this current article, we intend to investigate k-almost Yam-

abe and gradient k-almost Yamabe solitons inside the setting of three-
dimensional Kenmotsu manifolds.

1. Introduction

In [11] several years ago, Hamilton publicized the concept of Yamabe soliton.
According to the author, a Riemannian metric g of a complete Riemannian
manifold (Mn, g) is called a Yamabe soliton if it obeys

(1)
1

2
£W g = (r − λ) g,

where W , λ, r and £ indicates a smooth vector field, a real number, the well-
known scalar curvature and Lie-derivative respectively. Here, W is termed as
the soliton field of the Yamabe soliton. A Yamabe soliton is called shrinking
or expanding according as λ > 0 or λ < 0, respectively whereas steady if λ
= 0. Yamabe solitons have been investigated by several geometers in various
contexts (see, [2], [3], [10], [17], [20]). The so called Yamabe soliton becomes
the almost Yamabe soliton if λ is a C∞ function. In [1], Barbosa and Ribeiro
introduced the above notion which was completely classified by Seko and Maeta
in [16] on hypersurfaces in Euclidean spaces.

The Yamabe soliton reduces to a gradient Yamabe soliton if the soliton field
W is gradient of a C∞ function γ : Mn → R. In this occasion, from (1) we
have

(2) ∇2γ = (r − λ)g,

where ∇2γ indicates the Hessian of γ. The idea of gradient Yamabe soliton was
generalized by Huang and Li [12] and named as quasi-Yamabe gradient soliton.
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According to Huang and Li, g ( Riemannian metric) obeys the equation

(3) ∇2γ =
1

m
dγ ⊗ dγ + (r − λ) g,

where λ ∈ R and m is a positive constant. If m = ∞, the foregoing equation
reduces to Yamabe gradient soliton.

A few years ago in [14], taking λ as a C∞ function, Pirhadi and Razavi
investigated an almost quasi-Yamabe gradient soliton. They got a few fasci-
nating formulas and produce a necessary and sufficient condition under which
an arbitrary compact almost Yamabe soliton is necessarily gradient. Recently,
Chen [5] has studied almost quasi-Yamabe solitons within the context of almost
Cosymplectic manifolds.

According to Chen [4], a Riemannian metric is said to be a k-almost Yamabe
soliton if there exists a smooth vector field W , a C∞ function λ and a nonzero
function k such that

(4)
k

2
£W g = (r − λ) g

holds. We denote the k-almost Yamabe soliton by (g,W, k, λ). If W = Dγ,
the previous equation reduces to gradient k-almost Yamabe soliton (g, γ, k, λ).
The k-almost Yamabe soliton is called closed if the 1-form W [ is closed. The
k-almost Yamabe soliton becomes trivial if W ≡ 0, otherwise nontrivial. Fur-
thermore, when λ = constant, the previous equation gives the k- Yamabe
soliton.

The above works motivate us to study k-almost Yamabe soliton in 3-dimensional
Kenmotsu manifolds. Precisely, we prove the following results:

Theorem 1.1. There does not exist k-almost Yamabe soliton with soli-
ton field pointwise collinear with the characteristic vector field in a Kenmotsu
manifold M3.

For W being orthogonal to the characteristic vector field, we have

Theorem 1.2. If the metric of a three-dimensional Kenmotsu manifold M3

is a k-Yamabe soliton with W being orthogonal to ξ, then the manifold is of
constant sectional curvature −1 and the k-Yamabe soliton is expanding with
λ = −6.

Theorem 1.3. If a Kenmotsu manifold M3 admits a closed k-almost Yam-
abe soliton, then M3 is isometric to a Euclidean space R3.

Theorem 1.4. There does not exist nontrivial k-almost gradient Yamabe
soliton on a Kenmotsu manifold M3.

2. Preliminaries

Let M2n+1 be a connected almost contact metric manifold endowed with
an almost contact metric structure (φ,ξ,η,g), that is, φ is an (1,1)-tensor field,
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ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such
that

φ2(E) = −E + η(E)ξ, η(ξ) = 1, φξ = 0, ηφ = 0,

g(φE, φF ) = g(E,F )− η(E)η(F ),

g(E, ξ) = η(E)

for all E,F ∈ Γ(TM).
If the following condition is fulfilled in an almost contact metric manifold

(∇Eφ)F = g(φE,F )ξ − η(F )φE,

then M is called a Kenmotsu manifold [13], where ∇ denotes the Levi-Civita
connection of g. From the antecedent equation it is clear that

(5) ∇Eξ = E − η(E)ξ

and
(∇Eη)F = g(E,F )− η(E)η(F ).

In addition, the curvature tensor R and the Ricci tensor S satisfy

R(E,F )ξ = η(E)F − η(F )E,

R(ξ, E)F = η(F )E − g(E,F )ξ,

R(ξ, E)ξ = E − η(E)ξ,

S(E, ξ) = −2nη(E).

From [8], we know that for a Kenmotsu manifold M3

R(E,F )Z =
r + 4

2
[g(F,Z)E − g(E,Z)F ](6)

−r + 6

2
[g(F,Z)η(E)ξ − g(E,Z)η(F )ξ

+η(F )η(Z)E − η(E)η(Z)F ],

(7) S(E,F ) =
1

2
[(r + 2)g(E,F )− (r + 6)η(E)η(F )],

where S, R and r are the Ricci tensor, the curvature tensor and the scalar
curvature of the manifold respectively. Kenmotsu manifolds have been studied
by several authors such as Pitis [15], De and De ([6], [7]) De, Yildiz and Yaliniz
[9] and many others.

Definition 2.1. A vector fieldW on an n dimensional Riemannian manifold
(M, g) is said to be conformal if

(8) £W g = 2ρg,

ρ being the conformal coefficient. If the conformal coefficient is zero then the
conformal vector field is a Killing vector field.

In the following we write ρ = r−λ
k . Therefore we have the subsequent

lemma:
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Lemma 2.2 ([19]). On an 2n + 1-dimensional Riemannian manifold en-
dowed with a k-almost Yamabe soliton, the following relations are satisfied:

(£WS)(E,F ) = −(2n− 1)g(∇EDρ,F )− (∆ρ)g(E,F ),

£W r = −2ρr − 4n∆ρ

for E,F ∈ X(M), D being the gradient operator and ∆ = divD being the
Laplacian operator of g.

3. Proofs of Theorems

3.1. Proof of Theorem 1.1

Here we suppose that the potential vector field W is pointwise collinear
with the characteristic vector field ξ (i.e., Z = cξ, where c is a function on M).
Then from (4) we derive

(9) k{g(∇Ecξ, F ) + g(∇F cξ, E)} = 2(r − λ)g(E,F ).

Utilizing (5) in (9), we get

2kc[g(E,F )− η(E)η(F )] + (Ec)η(F ) + (Fc)η(E)(10)

−2(r − λ)g(E,F ) = 0.

Replacing F by ξ in (10) gives

(11) (Ec) + (ξc)η(E)− 2(r − λ)η(E) = 0.

Putting E = ξ in (11) yields

(12) ξc = (r − λ).

Substituting the value of ξc in (11) we infer

(13) dc = (r − λ)η.

Applying d on (13) and using Poincare lemma d2 ≡0, we have

(14) (r − λ)dη + (dr)η − (dλ)η = 0.

Taking wedge product of (14) with η, we obtain

(15) (r − λ)η ∧ dη = 0.

Since η ∧ dη 6= 0 , we infer

(16) r − λ = 0.

Utilizing (16) in (13) gives dc = 0 i.e., c =constant. Then (4) yields £ξg = 0
i.e., ξ is Killing vector field. But in a Kenmotsu manifold we know that ξ can
never be a Killing vector field by (5). This finishes the proof.
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3.2. Proof of Theorem 1.2

From (4) we have

k

2
(g(∇EW,F ) + g(W,∇FW )) = (r − λ)g(E,F ) for all E,F.

Letting E = F = ξ gives r = λ since W is orthogonal to ξ and Equation (5)
implies ∇ξξ = 0. Since λ is constant, by [20, Lemma 3.2] we know r = λ = −6.
Further, it follows from (6) that R(E,F )Z = −[g(F,Z)E − g(E,Z)F ] for all
vector fields E,F, Z. This means that M3 is of constant sectional curvature
−1. This completes the proof.

3.3. Proof of Theorem 1.3

Lie differentiating (7) along W and utilizing Lemma 2.1, we have

−2g(∇EDρ,F )− 2(∆ρ)g(E,F )

= £W r[g(E,F )− η(E)η(F )] + (r + 2)(£W g)(E,F )

−(r + 6)(£W η)(E)η(F )− (r + 6)η(E)(£W η)(F )

= −(2ρr + 4∆ρ)[g(E,F )− η(E)η(F )] + 2(r + 2)g(E,F )

−(r + 6)[2ρη(E) + g(E,£W ξ)]η(F )− (r + 6)[2ρη(F ) + g(F,£W ξ)]η(E)

= −4(∆ρ− ρ)g(E,F )− (2ρr − 4∆ρ+ 24ρ)η(E)η(F )

−(r + 6)[g(E,£W ξ)η(F ) + g(F,£W ξ)η(E)],

from which we get

∇EDρ = (∆ρ− 2ρ)E − (ρr − 2∆ρ+ 12ρ)η(E)ξ

+(
r

2
+ 3)[g(E,£W ξ)ξ + η(E)£W ξ].(17)

Now setting E = ξ yields

(18) ∇ξDρ = (−ρr
2
−∆ρ+ 7ρ)ξ + (

r

2
+ 3)£W ξ.

Let us assume that (g,W, k, λ) is a closed k-almost Yamabe soliton. Then from
(4) we can easily get ∇EW = ρE. Thus utilizing (5) we infer

(19) £W ξ = W − η(W )ξ − ρξ.

Moreover, for any vector fields E,F , we easily find that

(20) R(E,F )W = E(ρ)F − F (ρ)E.

Contracting the previous equation over E, we have QW = −2Dρ. Now differ-
entiating the above expression along ξ gives ∇ξDρ = ρξ, since Qξ = −2ξ in a
3-dimensional Kenmotsu manifold. Hence from (18) we obtain

(21) (
r

2
+ 3)[F − η(F )ξ] = (−∆ρ+ 3ρ)ξ.

This gives ∆ρ = 3ρ.
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Substituting the above value and (19) into (17) yields

(22) ∇EDρ = ρE.

Therefore, from [18, Theorem 2], we conclude that M3 is isometric to a Eu-
clidean space Rn.

3.4. Proof of Theorem 1.4

Let us consider a k-almost Yamabe gradient soliton (g, γ, k, λ) on a Ken-
motsu manifold M3 . Then equation (4) can be written as

(23) k∇EDγ = (r − λ)F.

Executing the covariant derivative of (23) along E, we obtain

k∇E∇FDγ = (E(r − λ))F + (r − λ)∇EF

−1

k
(Ek)(r − λ)F.(24)

Exchanging E and F in (24), we get

k∇F∇EDγ = (F (r − λ))E + (r − λ)∇FE

−1

k
(Fk)(r − λ)E(25)

and

k∇[E, F ] Dγ = (r − λ)[E, F ].(26)

Utilizing (23)-(26) and together with R(E, F )W = ∇E∇FW − ∇F ∇EW −
∇[E,F ]W , we infer

k2R(E, F )Dγ = k[{E(r − λ)}F ]− k[{F (r − λ)}E]

−(Ek)(r − λ)F + (Fk)(r − λ)E.(27)

Executing the inner product of (27) with ξ yields

k2g(R(E, F ) Dγ, ξ) = k[{E(r − λ)}η(F )]− k[{F (r − λ)}η(E)]

−(Ek)(r − λ)η(F ) + (Fk)(r − λ)η(E).(28)

Again, we obtain from relation (5) that

(29) k2g (R(E,F )Dγ, ξ) = −k2{(Fγ)η(E)− (Eγ)η(F )}.

Combining equation (28) and (29), we get

k[{E(r − λ)}η(F )]− k[{F (r − λ)}η(E)]

−(Ek)(r − λ)η(F ) + (Fk)(r − λ)η(E)

+k2{(Fγ)η(E)− (Eγ)η(F )} = 0(30)

Now replacing F by ξ, give that

(31) k2[Eγ − (ξγ)η(E)] = 0.



k-Almost Yamabe Solitons 121

Since k 6= 0, we immediately have

(32) Dγ = (ξγ)ξ.

From the preceding equation we can write dγ = (ξγ)η, where d stands for
the exterior differentiation. Taking exterior derivative of the previous equation
yields d2γ = d(ξγ)∧η+(ξγ)dη. Utilizing Poincare lemma d2 ≡0 in the foregoing
equation and then executing wedge product with η we obtain (ξγ)η ∧ dη = 0.
Hence ξγ = 0, since η ∧ dη 6= 0 in a Kenmotsu manifold. Thus we conclude
that dγ = 0 and therefore γ is constant. This finishes the proof.
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