• Title/Summary/Keyword: solidification curve

Search Result 26, Processing Time 0.025 seconds

Modelling for the Flying and Cooling Behaviors of the Centrifugally Atomized Particles (원심분무 입자의 비산 및 냉각 모델링)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • Flying and solidification behaviors of the particles manufactured by centrifugal atomization were investigated. Both models were solved by the explicit FDM. Flying calculation supported the experimental results that the finer particles flied shorter than coarser particles and that particles flied shorter for lower rotation velocity than for higher velocity. Cooling curve and dendrite arm spacing were predicted by use of heat transfer analysis.

  • PDF

A Study on Low Temperature Sequential Lateral Solidification(SLS) Poly-Si Thin Film Transistors(TFT′s) with Molybdenum Gate (Molybdenum 게이트를 적용한 저온 SLS 다결정 TFT′s 소자 제작과 특성분석에 관한 연구)

  • 고영운;박정호;김동환;박원규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.235-240
    • /
    • 2003
  • In this paper, we present the fabrication and the characteristic analysis of sequential lateral solidification(SLS) poly-Si thin film transistors(TFT's) with molybdenum gate for active matrix liquid displays (AMLCD's) pixel controlling devices. The molybdenum gate is applied for the purpose of low temperature processing. The maximum processing temperature is 55$0^{\circ}C$ at the dopant thermal annealing step. The SLS processed poly-Si film which is reduced grain and grain boundary effect, is applied for the purpose of electrical characteristics improvements of poly-Si TFT's. The fabricated low temperature SLS poly-Si TFT's had a varying the channel length and width from 10${\mu}{\textrm}{m}$ to 2${\mu}{\textrm}{m}$. And to analyze these devices, extract electrical characteristic parameters (field effect mobility, threshold voltage, subthreshold slope, on off current etc) from current-voltage transfer characteristics curve. The extract electrical characteristic of fabricated low temperature SLS poly-Si TFT's showed the mobility of 100~400cm$^2$/Vs, the off current of about 100pA, and the on/off current ratio of about $10^7$. Also, we observed that the change of grain boundary according to varying channel length is dominant for the change of electrical characteristics more than the change of grain boundary according to varying channel width. Hereby, we comprehend well the characteristics of SLS processed poly-Si TFT's witch is recrystallized to channel length direction.

Fluctuation of Solid-Liquid Interface of Faceted Phase and Nonfaceted Phase by Periodic Temperature Variation

  • Oh, Sung-Tag;Kim, Young Do;Song, Young-Jun;Suk, Myung-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.644-648
    • /
    • 2016
  • In order to examine how the solid-liquid interface responds to temperature variation depending on the materials characteristics, i.e. faceted phase or nonfaceted phase, the moving solid-liquid interface of transparent organic material, as a model substance for metallic materials (pivalic acid, camphene, salol, and camphor-50wt% naphthalene) was observed in-situ. Plots of the interface movement distance against time were obtained. The solid-liquid interface of the nonfaceted phase is atomically rough; it migrates in continuous mode, giving smooth curves of the distance-time plot. This is the case for pivalic acid and camphene. It was expected that the faceted phases would show different types of curves of the distance-time plot because of the atomically smooth solid-liquid interface. However, salol (faceted phase) shows a curve of the distance-time plot as smooth as that of the nonfaceted phases. This indicates that the solid-liquid interface of salol migrates as continuously as that of the nonfaceted phases. This is in contrast with the case of naphthalene, one of the faceted phases, for which the solid-liquid interface migrates in "stop and go" mode, giving a stepwise curve of the distance-time plot.

Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process (난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과)

  • Lee, Dae-Sung;Kim, Hyo-Geun;Ha, Man-Yeong;Park, Yong-Ho;Park, Ik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Microfracture Mechanism of Squeeze Cast AZ51-xSn Magnesium Alloys (용탕단조법으로 제조된 AZ51-xSn 마그네슘 합금의 미세파괴기구)

  • Kim, Byeong Ho;Do, Jeonghyeon;Lee, Sunghak;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.797-810
    • /
    • 2009
  • A study was made of the effects of a Sn addition on the microstructure and microfracture mechanism of squeeze cast AZ51-xSn magnesium alloys. Microstructural observation, in situ fracture testing, and fractographic observations were conducted on these alloys to clarify the microfracture process. The microstructural analyses indicated that $Mg_2Sn$ particles as well as $Mg_{17}Al_{12}$ particles precipitated mainly along the solidification cell boundaries; the volume fraction of these hard particles increased as the amount of added Sn increased, with increased the strength. From in situ fracture observations of the AZ51-7Sn alloy, coarse precipitates located on the cell boundaries worked as easy crack propagation sites and caused abrupt intercellular fracturing. On the other hand, the overall fracture properties of the AZ51-3Sn alloy improved because crack propagation proceeded into the Mg matrix rather than into the cell boundaries as twins developed actively, as confirmed by an R-curve analysis. These findings suggest that the addition of 3~5 wt.% Sn is effective in improving both the tensile and fracture properties on the basis of well-developed twins, the blocking of crack propagation, and crack blunting.

Mechanical Properties in Rapidly Solidified Al-Nd-(Cu,Ag) Alloys with Mesoscopic Structure (메조스코픽 구조를 가지는 급냉응고 Al-Nd-(Cu,Ag)합금의 기계적 성질)

  • Koh, Geun-Woo;Kim, Yeong-Hwan;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • In rapidly solidified $Al_{92-x}Nd_8$(Cu,Ag)x ($0{\leq}X{\leq}10at%$) alloys, amorphous single phases were obtained in the ranges of $Oat%{\leq}X{\leq}4at%$ for Al-Nd-Cu system and $Oat%{\leq}X{\leq}6at%$ for Al-Nd-Ag system, respectively. Mesoscopic structures consisted of amorphous and crystalline phases were formed above solute ranges. It was founded that the mesoscopic structures were also formed near 1st exothermic peak on DSC curve by aging in amorphous single phase alloys. For example, amorphous $Al_{92-x}Nd_8$(Cu,Ag)x (X=2.4at%) alloys containing nanoscale Al particles and compounds, i.e., mesoscopic structure, exhibited higher tensile fracture strength(${\sigma}_f$) than those of amorphous single phase alloys with the same composition. The ${\sigma}_f$ showed a maximum value in the $V_f$ ranges of 10~15%. The reason is presumed that the nanoscale precipitates which have higher mechanical strength compared with the amorphous phase with the same composition act as an effective resistance to shear deformation of the amorphous matrix.

  • PDF

Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys (Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

Shape Memory Characteristics and Crystallization Annealing of Amorphous $Ti_{50}-Ni_{30}-Cu_{20}$ Ribbons (비정질 $Ti_{50}-Ni_{30}-Cu_{20}$ 리본의 결정화 열처리와 형상기억특성 변화)

  • Kim, Yoen-Wook;Yun, Young-Mok
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • Ti-Ni-Cu alloys are very attractive shape memory alloys for applications as actuators because of a large transformation elongation and a small transformation hysteresis. Rapidly solidified Ti-Ni alloy ribbons have been known to have the shape memory effect and superelasticity superior to the alloy ingots fabricated by conventional casting. In this study, solidification structures and shape memory characteristics of $Ti-Ni_{30}-Cu_{20}$ alloy ribbons prepared by melt spinning were investigated by means of DSC and XRD. Operating parameters to fabricate the amorphous ribbons were the wheel velocity of 55 m/s and the melt spinning temperature of $1500^{\circ}C$. The crystallization temperature was measured to be $440^{\circ}C$. The crystallized ribbons exhibited very fine microstructure after annealing at $440^{\circ}C$ for 10 minutes and $460^{\circ}C$ for 5 minutes and was deformed up to about 6.8% and 6.23% in ductile manner, respectively. Stress-strain curve of the ribbon exhibited a flat stress-plateau at 64 MPa and this is associated with the stress-induced a B2-B19 martensitic transformation. During cycle deformation with the applied stress of 220 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $4.3^{\circ}C$ and 3.6%.

Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting (고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Estimation of the Permeability Variation in Saturated Sand Deposits Subjected to Shaking Load Using 1-g Stinking Table Test (1-g 진동대시험을 이용한 진동하중을 받는 포화된 모래지반의 투수계수 변화 추정)

  • 하익수;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.363-369
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction and to estimate the variation in permeability during shaking load, which should be known for settlement predictions of the ground undergoing liquefaction. In this study, 1-g shaking table tests were carried out for 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured dissipation curve of the excess pore pressure after liquefaction was linearly simulated using the solidification theory, and from the analysis of the slopes of linearly simulated curves, the correlation between dissipation velocity and the gradation characteristics was obtained. By substituting this correlation and the measured settlement to the dissipation velocity equation recommended in solidification theory, the permeability during dissipation was calculated, which was used for estimating the permeability variation during shaking load. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size divided by the coefficient of uniformity. The permeability during dissipation and liquefaction increased by 1.1∼2.8 times and 1.4∼5 times compared to the initial permeability of the original ground, respectively. And the amount of increase became greater as the effective grain size of the test sand increased and the coefficient of uniformity decreased.