• 제목/요약/키워드: solid fuel

검색결과 1,236건 처리시간 0.024초

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

선박용 정유기 고형분 분리 성능시험 규격기준에 관한 연구 (A Study on the Standard Criteria of Solid Particle Separation Test for Marine Centrifugal Purifier)

  • 정상후
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.1028-1034
    • /
    • 2007
  • In order to establish a criteria of solid particle separation performance test on marine centrifugal purifier at factory acceptance test, an investigation had been done on criteria of test standards, regulations and test specifications of purifier manufactures. KS V 7836, fuel oil and lubricating oil purifiers for marine use-centrifugal type, the criteria of solid particle separation is studied in the point of reality, restricts and analysis method. It is proposed that a reasonable criteria and analysis method should be adopted, and the current criteria shall be revised to adequate levels considering reasonable basis and industrial technology levels. Also, the test analysis conceptions, separation efficiency method and particle size restriction method, are reviewed to fulfil separation performance test for marine centrifugal purifiers.

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

  • Kim, Young Jin;Lim, Hyung-Tae
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.325-330
    • /
    • 2015
  • Performance of solid oxide fuel cells (SOFCs), in comparison with that under hydrogen fuel, were investigated under direct internal reforming conditions. Anode supported cells were fabricated with an Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode for the present work. Measurements of I-V curves and impedance were conducted with S/C (steam to carbon) ratio of ~ 2 at $800^{\circ}C$. The outlet gas was analyzed using gas chromatography under open circuit condition; the methane conversion rate was calculated and found to be ~ 90% in the case of low flow rate of methane and steam. Power density values were comparable for both cases (hydrogen fuel and internal steam reforming of methane), and in the latter case the cell performance was improved, with a decrease in the flow rate of methane with steam, because of the higher conversion rate. The present work indicates that the short-term performance of SOFCs with conventional Ni+YSZ anodes, in comparison with that under hydrogen fuel, is acceptable under internal reforming condition with the optimized fuel flow rate and S/C ratio.

이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구 (Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell)

  • 권영진;김동연;배중면
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

세공충진 음이온 전도성막의 제조 및 이를 이용한 고체알칼리 연료전지 성능 평가 (Pore-filling anion conducting membranes and their cell performance for a solid alkaline fuel cell)

  • 최영우;이미순;박구곤;임성대;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • AEM which were used for solid alkaline fuel cell(SAFC) were prepared by photo polymerization in method pore-filling with various quaternary ammonium cationic monomers and crosslinkers without an amination process. Their specific thermal and chemical properties were characterized through various analyses and the physico-chemical properties of the prepared electrolyte membranes such as swelling behavior, ion exchange capacity and ionic conductivity were also investigated in correlation with the electrolyte composition. The polymer electrolyte membranes prepared in this study have a very wide hydroxyl ion conductivity range of 0.01 - 0.45S/cm depending on the composition ratio of the electrolyte monomer and crosslinking agent used for polymerization. However, the hydroxyl ion conductivity of the membranes was relatively higher at the whole cases than those of commercial products such as A201 membrane of Tokuyama. These pore-filling membranes have also excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lowest electrolyte crossover through the membranes, and easier preparation process compared of traditional cast membranes. The prepared membranes were then applied to solid alkaline fuel cell and it was found comparable fuel cell performance to A201 membrane of Tokuyama.

  • PDF

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (I) - 등온 모델 - (Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (I) - Isothermal Model -)

  • 현희철;손정락;이준식;노승탁
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.635-643
    • /
    • 2003
  • Parametric study for the analysis of performance characteristics of a planar -type solid oxide fuel cell(SOFC) using computational flow analysis is conducted. A planar -type SOFC, which is composed by two gas channels (fuel and ai.) and one set of anode-electrolyte-cathode assembly, is modeled as a two -dimensional isothermal case. Results of computational analysis of flow field including distributions of mass fractions in gas channels are used to the performance analysis of the fuel cell. Flow analysis makes it possible to consider current density distributions along the length of the cell in the process of performance analysis of the SOFC. As results of parametric study, it is found that the mole fraction of fuel at the inlet of fuel channel, operating pressure and temperature are closely related to the performance characteristics of SOFC.

연료전지의 임피던스방법 적용 연구 (Fuel Cell Performance by the Impedance Method)

  • 김귀열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.510-511
    • /
    • 2008
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for solid oxide fuel cell, by the way, Ni-YSZ materials are used as anode of high temperature widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a result, the performance of Ni-YSZ anode(40vol%) was better excellent than the others.

  • PDF

Concept, Manufacture and Results of the Microtubular Solid Oxide Fuel Cell

  • Sammes, Nigel;Galloway, Kevin;Yamaguchi, Toshiaki;Serincan, Mustafa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2011
  • This paper summarized concept, manufacture and results of the micro-tubular solid oxide fuel cells (SOFCs). The cells were fabricated by co-sintering of extruded micro-tubular anode support and electrolyte coating layer, and then additional cathode coating. The cells showed quick voltage rising within 1 minute, and the electrochemical performances were closely related to the balance of fuel utilization and performance loss. And a thermal-fluid simulation model was also reported in combination with the electrochemical evaluation results on the GDC-based micro-tubular SOFCs.