DOI QR코드

DOI QR Code

Concept, Manufacture and Results of the Microtubular Solid Oxide Fuel Cell

  • Sammes, Nigel (Department of Metallurgical and Materials Engineering, Colorado School of Mines) ;
  • Galloway, Kevin (Department of Metallurgical and Materials Engineering, Colorado School of Mines) ;
  • Yamaguchi, Toshiaki (Department of Metallurgical and Materials Engineering, Colorado School of Mines, Institute of Advanced Industrial Science and Technology) ;
  • Serincan, Mustafa (Department of Mechanical Engineering, University of Connecticut)
  • Published : 2011.02.28

Abstract

This paper summarized concept, manufacture and results of the micro-tubular solid oxide fuel cells (SOFCs). The cells were fabricated by co-sintering of extruded micro-tubular anode support and electrolyte coating layer, and then additional cathode coating. The cells showed quick voltage rising within 1 minute, and the electrochemical performances were closely related to the balance of fuel utilization and performance loss. And a thermal-fluid simulation model was also reported in combination with the electrochemical evaluation results on the GDC-based micro-tubular SOFCs.

Keywords

References

  1. M. Dokiya, Solid State Ionics 152-153, 383 (2002) [DOI: 10.1016/s0167-2738(02)00345-4].
  2. T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, S. Yoshida, and M. Sano, J. Electrochem. Soc. 149, A133 (2002) [DOI: 10.1149/1.1430226].
  3. T. Ishihara, J. Tabuchi, S. Ishikawa, J. Yan, M. Enoki, and H. Matsumoto, Solid State Ionics 177, 1949 (2006) [DOI: 10.1016/ j.ssi.2006.01.044].
  4. B. C. Steele and A. Heinzel, Nature 414, 345 (2001) [DOI: 10.1038/35104620].
  5. J. W. Fergus, J. Power Sources 162, 30 (2006) [DOI: 10.1016/ j.jpowsour.2006.06.062].
  6. N. M. Sammes, Y. Du, and R. Bove, J. Power Sources 145, 428 (2005) [DOI: 10.1016/j.jpowsour.2005.01.079].
  7. Y. Funahashi, T. Suzuki, Y. Fujishiro, T. Shimamori, and M. Awano, ECS Trans. 7, 643 (2007) [DOI: 10.1149/1.2729148].
  8. T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, and M. Awano, Electrochem. Commun. 10, 1381 (2008) [DOI: 10.1016/ j.elecom.2008.07.013].
  9. T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, and M. Awano, Science 325, 852 (2009) [DOI: 10.1126/science.1176404].
  10. I. P. Kilbride, J. Power Sources 61, 167 [DOI: 10.1016/s0378-7753(96)02362-2].
  11. K. Kendall and M. Palin, J. Power Sources 71, 268 (1998) [DOI: 10.1016/s0378-7753(97)02761-4].
  12. K. Yashiro, N. Yamada, T. Kawada, J. Hong, A. Kaimai, Y. Nigara, and J. Mizusaki, Electrochemistry 70, 958 (2002) [DOI:10.1016/j.elecom.2008.08.016]
  13. K. Kendall, Int. J. Appl. Ceram. Technol. 7, 1 (2010) [DOI: 10.1111/j.1744-7402.2008.02350.x]
  14. S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin, and S. K. Dong, Int. J. Hydrogen Energy 33, 2330 (2008) [DOI:10.1016/ j.ijhydene.2008.02.034].
  15. M. Ni, M. K. H. Leung, and D. Y. C. Leung, Energy Convers. Manage. 48, 1525 (2007) [DOI:10.1016/j.enconman.2006.11.016].
  16. W. Jiang, R. Fang, R. Dougal, and J. Khan, J. Energ. Resour.-ASME, 130, 022601 (2008). https://doi.org/10.1115/1.2906114
  17. P. Lisbona, A. Corradetti, R. Bove, and P. Lunghi, Electrochim. Acta 53, 1920 (2007) [DOI: 10.1016/j.electacta.2007.08.046].
  18. C. O. Colpan, I. Dincer, and F. Hamdullahpur, Int. J. Hydrogen Energy 32, 787 (2007) [DOI: 10.1016/j.ijhydene.2006.10.059].
  19. R. Bove and S. Ubertini, J. Power Sources 159, 543 (2006) [DOI: 10.1016/j.jpowsour.2005.11.045].
  20. E. Achenbach, J. Power Sources 49, 333 (1994) [DOI: 10.1016/0378-7753(93)01833-4].
  21. J. Jia, A. Abudula, L. Wei, R. Jiang, and S. Shen, J. Power Sources 171, 696 (2007) [DOI: 10.1016/j.jpowsour.2007.06.057].
  22. Y. Mollayi Barzi, M. Ghassemi, and M. H. Hamedi, J. Power Sources 192, 200 (2009) [DOI: 10.1016/j.jpowsour.2009.01.012].
  23. D. Bhattacharyya and R. Rengaswamy, Ind. Eng. Chem. Res. 48, 6068 (2009) [DOI: 10.1021/ie801664j].
  24. T. Ota, M. Koyama, C.-j. Wen, K. Yamada, and H. Takahashi, J. Power Sources 118, 430 (2003) [DOI: 10.1016/s0378-7753(03)00109-5].
  25. P. Nehter, J. Power Sources 157, 325 (2006) [DOI: 10.1016/ j.jpowsour.2005.07.077].
  26. M. F. Serincan, U. Pasaogullari, and N. M. Sammes, J. Electrochem. Soc. 155, B1117 (2008) [DOI: 10.1149/1.2971194].

Cited by

  1. Structural and electrical properties of Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ thick film electrolyte vol.48, pp.12, 2013, https://doi.org/10.1016/j.materresbull.2013.05.068
  2. Electrical and structural properties of Ce0.8(Sm0.5−xY0.5Alx)0.2O2−δ ceramics as an electrolyte for SOFC vol.58, 2014, https://doi.org/10.1016/j.materresbull.2014.05.011
  3. Effects of the Sintering Temperature on the Properties of Ce0.85Gd0.1Ca0.05O2- δ Electrolyte Materials for SOFC vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741453
  4. Nanomaterials for solid oxide fuel cells: A review vol.82, 2018, https://doi.org/10.1016/j.rser.2017.09.046
  5. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review pp.2095-1698, 2018, https://doi.org/10.1007/s11708-018-0546-2